This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmpidelt.1 | ⊢ 𝑋 = ran 𝐺 | |
| cmpidelt.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| Assertion | cmpidelt | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpidelt.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | cmpidelt.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | 1 2 | idrval | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑈 = ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 4 | 3 | eqcomd | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) = 𝑈 ) |
| 5 | 1 2 | iorlid | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑈 ∈ 𝑋 ) |
| 6 | 1 | exidu1 | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
| 7 | oveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 𝐺 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑥 ) = 𝑥 ) ) |
| 9 | 8 | ovanraleqv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
| 10 | 9 | riota2 | ⊢ ( ( 𝑈 ∈ 𝑋 ∧ ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) = 𝑈 ) ) |
| 11 | 5 6 10 | syl2anc | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) = 𝑈 ) ) |
| 12 | 4 11 | mpbird | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑈 𝐺 𝑥 ) = ( 𝑈 𝐺 𝐴 ) ) | |
| 14 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝐴 ) = 𝐴 ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑈 ) = ( 𝐴 𝐺 𝑈 ) ) | |
| 17 | 16 14 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑈 ) = 𝑥 ↔ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) ) |
| 19 | 18 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |
| 20 | 12 19 | sylan | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ) |