This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exidres.1 | ⊢ 𝑋 = ran 𝐺 | |
| exidres.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| exidres.3 | ⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) | ||
| Assertion | exidresid | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ( GId ‘ 𝐻 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | exidres.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | exidres.3 | ⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) | |
| 4 | resexg | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ∈ V ) | |
| 5 | 3 4 | eqeltrid | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐻 ∈ V ) |
| 6 | eqid | ⊢ ran 𝐻 = ran 𝐻 | |
| 7 | 6 | gidval | ⊢ ( 𝐻 ∈ V → ( GId ‘ 𝐻 ) = ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( GId ‘ 𝐻 ) = ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( GId ‘ 𝐻 ) = ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ( GId ‘ 𝐻 ) = ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 11 | 1 2 3 | exidreslem | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑈 ∈ dom dom 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |
| 12 | 11 | simprd | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 14 | 1 2 3 | exidres | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → 𝐻 ∈ ExId ) |
| 15 | elin | ⊢ ( 𝐻 ∈ ( Magma ∩ ExId ) ↔ ( 𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) ) | |
| 16 | rngopidOLD | ⊢ ( 𝐻 ∈ ( Magma ∩ ExId ) → ran 𝐻 = dom dom 𝐻 ) | |
| 17 | 15 16 | sylbir | ⊢ ( ( 𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ran 𝐻 = dom dom 𝐻 ) |
| 18 | 17 | ancoms | ⊢ ( ( 𝐻 ∈ ExId ∧ 𝐻 ∈ Magma ) → ran 𝐻 = dom dom 𝐻 ) |
| 19 | 14 18 | sylan | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ran 𝐻 = dom dom 𝐻 ) |
| 20 | 13 19 | raleqtrrdv | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
| 21 | 11 | simpld | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ dom dom 𝐻 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → 𝑈 ∈ dom dom 𝐻 ) |
| 23 | 22 19 | eleqtrrd | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → 𝑈 ∈ ran 𝐻 ) |
| 24 | 6 | exidu1 | ⊢ ( 𝐻 ∈ ( Magma ∩ ExId ) → ∃! 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 25 | 15 24 | sylbir | ⊢ ( ( 𝐻 ∈ Magma ∧ 𝐻 ∈ ExId ) → ∃! 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 26 | 25 | ancoms | ⊢ ( ( 𝐻 ∈ ExId ∧ 𝐻 ∈ Magma ) → ∃! 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 27 | 14 26 | sylan | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ∃! 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 28 | oveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 𝐻 𝑥 ) = ( 𝑈 𝐻 𝑥 ) ) | |
| 29 | 28 | eqeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐻 𝑥 ) = 𝑥 ) ) |
| 30 | 29 | ovanraleqv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |
| 31 | 30 | riota2 | ⊢ ( ( 𝑈 ∈ ran 𝐻 ∧ ∃! 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) → ( ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) = 𝑈 ) ) |
| 32 | 23 27 31 | syl2anc | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ( ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) = 𝑈 ) ) |
| 33 | 20 32 | mpbid | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ( ℩ 𝑢 ∈ ran 𝐻 ∀ 𝑥 ∈ ran 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) = 𝑈 ) |
| 34 | 10 33 | eqtrd | ⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) ∧ 𝐻 ∈ Magma ) → ( GId ‘ 𝐻 ) = 𝑈 ) |