This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | opidon2OLD | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid | ⊢ dom dom 𝐺 = dom dom 𝐺 | |
| 3 | 2 | opidonOLD | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 ) |
| 4 | forn | ⊢ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 → ran 𝐺 = dom dom 𝐺 ) | |
| 5 | 1 4 | eqtr2id | ⊢ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 → dom dom 𝐺 = 𝑋 ) |
| 6 | xpeq12 | ⊢ ( ( dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋 ) → ( dom dom 𝐺 × dom dom 𝐺 ) = ( 𝑋 × 𝑋 ) ) | |
| 7 | 6 | anidms | ⊢ ( dom dom 𝐺 = 𝑋 → ( dom dom 𝐺 × dom dom 𝐺 ) = ( 𝑋 × 𝑋 ) ) |
| 8 | foeq2 | ⊢ ( ( dom dom 𝐺 × dom dom 𝐺 ) = ( 𝑋 × 𝑋 ) → ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 ↔ 𝐺 : ( 𝑋 × 𝑋 ) –onto→ dom dom 𝐺 ) ) | |
| 9 | 7 8 | syl | ⊢ ( dom dom 𝐺 = 𝑋 → ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 ↔ 𝐺 : ( 𝑋 × 𝑋 ) –onto→ dom dom 𝐺 ) ) |
| 10 | foeq3 | ⊢ ( dom dom 𝐺 = 𝑋 → ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ dom dom 𝐺 ↔ 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) ) | |
| 11 | 9 10 | bitrd | ⊢ ( dom dom 𝐺 = 𝑋 → ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 ↔ 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) ) |
| 12 | 11 | biimpd | ⊢ ( dom dom 𝐺 = 𝑋 → ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) ) |
| 13 | 5 12 | mpcom | ⊢ ( 𝐺 : ( dom dom 𝐺 × dom dom 𝐺 ) –onto→ dom dom 𝐺 → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
| 14 | 3 13 | syl | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |