This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exidres.1 | ⊢ 𝑋 = ran 𝐺 | |
| exidres.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| exidres.3 | ⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) | ||
| Assertion | exidres | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → 𝐻 ∈ ExId ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | exidres.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | exidres.3 | ⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) | |
| 4 | 1 2 3 | exidreslem | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑈 ∈ dom dom 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 𝐻 𝑥 ) = ( 𝑈 𝐻 𝑥 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐻 𝑥 ) = 𝑥 ) ) |
| 7 | 6 | ovanraleqv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |
| 8 | 7 | rspcev | ⊢ ( ( 𝑈 ∈ dom dom 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) → ∃ 𝑢 ∈ dom dom 𝐻 ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 9 | 4 8 | syl | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ∃ 𝑢 ∈ dom dom 𝐻 ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) |
| 10 | resexg | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ∈ V ) | |
| 11 | 3 10 | eqeltrid | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐻 ∈ V ) |
| 12 | eqid | ⊢ dom dom 𝐻 = dom dom 𝐻 | |
| 13 | 12 | isexid | ⊢ ( 𝐻 ∈ V → ( 𝐻 ∈ ExId ↔ ∃ 𝑢 ∈ dom dom 𝐻 ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐻 ∈ ExId ↔ ∃ 𝑢 ∈ dom dom 𝐻 ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝐻 ∈ ExId ↔ ∃ 𝑢 ∈ dom dom 𝐻 ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑢 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑢 ) = 𝑥 ) ) ) |
| 16 | 9 15 | mpbird | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → 𝐻 ∈ ExId ) |