This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-lcm . (Contributed by AV, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-lcm | ⊢ ( 6 lcm 9 ) = ; 1 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn | ⊢ 6 ∈ ℕ | |
| 2 | 9nn | ⊢ 9 ∈ ℕ | |
| 3 | 1 2 | nnmulcli | ⊢ ( 6 · 9 ) ∈ ℕ |
| 4 | 3 | nncni | ⊢ ( 6 · 9 ) ∈ ℂ |
| 5 | 1 | nnzi | ⊢ 6 ∈ ℤ |
| 6 | 2 | nnzi | ⊢ 9 ∈ ℤ |
| 7 | 5 6 | pm3.2i | ⊢ ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) |
| 8 | lcmcl | ⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( 6 lcm 9 ) ∈ ℕ0 ) | |
| 9 | 8 | nn0cnd | ⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( 6 lcm 9 ) ∈ ℂ ) |
| 10 | 7 9 | ax-mp | ⊢ ( 6 lcm 9 ) ∈ ℂ |
| 11 | neggcd | ⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( - 6 gcd 9 ) = ( 6 gcd 9 ) ) | |
| 12 | 7 11 | ax-mp | ⊢ ( - 6 gcd 9 ) = ( 6 gcd 9 ) |
| 13 | 12 | eqcomi | ⊢ ( 6 gcd 9 ) = ( - 6 gcd 9 ) |
| 14 | ex-gcd | ⊢ ( - 6 gcd 9 ) = 3 | |
| 15 | 13 14 | eqtri | ⊢ ( 6 gcd 9 ) = 3 |
| 16 | 3cn | ⊢ 3 ∈ ℂ | |
| 17 | 15 16 | eqeltri | ⊢ ( 6 gcd 9 ) ∈ ℂ |
| 18 | 3ne0 | ⊢ 3 ≠ 0 | |
| 19 | 15 18 | eqnetri | ⊢ ( 6 gcd 9 ) ≠ 0 |
| 20 | 17 19 | pm3.2i | ⊢ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) |
| 21 | 1 2 | pm3.2i | ⊢ ( 6 ∈ ℕ ∧ 9 ∈ ℕ ) |
| 22 | lcmgcdnn | ⊢ ( ( 6 ∈ ℕ ∧ 9 ∈ ℕ ) → ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) = ( 6 · 9 ) ) | |
| 23 | 21 22 | mp1i | ⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) = ( 6 · 9 ) ) |
| 24 | 23 | eqcomd | ⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( 6 · 9 ) = ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) ) |
| 25 | divmul3 | ⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( ( ( 6 · 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) ↔ ( 6 · 9 ) = ( ( 6 lcm 9 ) · ( 6 gcd 9 ) ) ) ) | |
| 26 | 24 25 | mpbird | ⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( ( 6 · 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( ( 6 · 9 ) ∈ ℂ ∧ ( 6 lcm 9 ) ∈ ℂ ∧ ( ( 6 gcd 9 ) ∈ ℂ ∧ ( 6 gcd 9 ) ≠ 0 ) ) → ( 6 lcm 9 ) = ( ( 6 · 9 ) / ( 6 gcd 9 ) ) ) |
| 28 | 4 10 20 27 | mp3an | ⊢ ( 6 lcm 9 ) = ( ( 6 · 9 ) / ( 6 gcd 9 ) ) |
| 29 | 15 | oveq2i | ⊢ ( ( 6 · 9 ) / ( 6 gcd 9 ) ) = ( ( 6 · 9 ) / 3 ) |
| 30 | 6cn | ⊢ 6 ∈ ℂ | |
| 31 | 9cn | ⊢ 9 ∈ ℂ | |
| 32 | 30 31 16 18 | divassi | ⊢ ( ( 6 · 9 ) / 3 ) = ( 6 · ( 9 / 3 ) ) |
| 33 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 34 | 33 | eqcomi | ⊢ 9 = ( 3 · 3 ) |
| 35 | 34 | oveq1i | ⊢ ( 9 / 3 ) = ( ( 3 · 3 ) / 3 ) |
| 36 | 16 16 18 | divcan3i | ⊢ ( ( 3 · 3 ) / 3 ) = 3 |
| 37 | 35 36 | eqtri | ⊢ ( 9 / 3 ) = 3 |
| 38 | 37 | oveq2i | ⊢ ( 6 · ( 9 / 3 ) ) = ( 6 · 3 ) |
| 39 | 6t3e18 | ⊢ ( 6 · 3 ) = ; 1 8 | |
| 40 | 32 38 39 | 3eqtri | ⊢ ( ( 6 · 9 ) / 3 ) = ; 1 8 |
| 41 | 28 29 40 | 3eqtri | ⊢ ( 6 lcm 9 ) = ; 1 8 |