This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-lcm . (Contributed by AV, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-lcm | |- ( 6 lcm 9 ) = ; 1 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn | |- 6 e. NN |
|
| 2 | 9nn | |- 9 e. NN |
|
| 3 | 1 2 | nnmulcli | |- ( 6 x. 9 ) e. NN |
| 4 | 3 | nncni | |- ( 6 x. 9 ) e. CC |
| 5 | 1 | nnzi | |- 6 e. ZZ |
| 6 | 2 | nnzi | |- 9 e. ZZ |
| 7 | 5 6 | pm3.2i | |- ( 6 e. ZZ /\ 9 e. ZZ ) |
| 8 | lcmcl | |- ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( 6 lcm 9 ) e. NN0 ) |
|
| 9 | 8 | nn0cnd | |- ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( 6 lcm 9 ) e. CC ) |
| 10 | 7 9 | ax-mp | |- ( 6 lcm 9 ) e. CC |
| 11 | neggcd | |- ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( -u 6 gcd 9 ) = ( 6 gcd 9 ) ) |
|
| 12 | 7 11 | ax-mp | |- ( -u 6 gcd 9 ) = ( 6 gcd 9 ) |
| 13 | 12 | eqcomi | |- ( 6 gcd 9 ) = ( -u 6 gcd 9 ) |
| 14 | ex-gcd | |- ( -u 6 gcd 9 ) = 3 |
|
| 15 | 13 14 | eqtri | |- ( 6 gcd 9 ) = 3 |
| 16 | 3cn | |- 3 e. CC |
|
| 17 | 15 16 | eqeltri | |- ( 6 gcd 9 ) e. CC |
| 18 | 3ne0 | |- 3 =/= 0 |
|
| 19 | 15 18 | eqnetri | |- ( 6 gcd 9 ) =/= 0 |
| 20 | 17 19 | pm3.2i | |- ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) |
| 21 | 1 2 | pm3.2i | |- ( 6 e. NN /\ 9 e. NN ) |
| 22 | lcmgcdnn | |- ( ( 6 e. NN /\ 9 e. NN ) -> ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) = ( 6 x. 9 ) ) |
|
| 23 | 21 22 | mp1i | |- ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) = ( 6 x. 9 ) ) |
| 24 | 23 | eqcomd | |- ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( 6 x. 9 ) = ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) ) |
| 25 | divmul3 | |- ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) <-> ( 6 x. 9 ) = ( ( 6 lcm 9 ) x. ( 6 gcd 9 ) ) ) ) |
|
| 26 | 24 25 | mpbird | |- ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) = ( 6 lcm 9 ) ) |
| 27 | 26 | eqcomd | |- ( ( ( 6 x. 9 ) e. CC /\ ( 6 lcm 9 ) e. CC /\ ( ( 6 gcd 9 ) e. CC /\ ( 6 gcd 9 ) =/= 0 ) ) -> ( 6 lcm 9 ) = ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) ) |
| 28 | 4 10 20 27 | mp3an | |- ( 6 lcm 9 ) = ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) |
| 29 | 15 | oveq2i | |- ( ( 6 x. 9 ) / ( 6 gcd 9 ) ) = ( ( 6 x. 9 ) / 3 ) |
| 30 | 6cn | |- 6 e. CC |
|
| 31 | 9cn | |- 9 e. CC |
|
| 32 | 30 31 16 18 | divassi | |- ( ( 6 x. 9 ) / 3 ) = ( 6 x. ( 9 / 3 ) ) |
| 33 | 3t3e9 | |- ( 3 x. 3 ) = 9 |
|
| 34 | 33 | eqcomi | |- 9 = ( 3 x. 3 ) |
| 35 | 34 | oveq1i | |- ( 9 / 3 ) = ( ( 3 x. 3 ) / 3 ) |
| 36 | 16 16 18 | divcan3i | |- ( ( 3 x. 3 ) / 3 ) = 3 |
| 37 | 35 36 | eqtri | |- ( 9 / 3 ) = 3 |
| 38 | 37 | oveq2i | |- ( 6 x. ( 9 / 3 ) ) = ( 6 x. 3 ) |
| 39 | 6t3e18 | |- ( 6 x. 3 ) = ; 1 8 |
|
| 40 | 32 38 39 | 3eqtri | |- ( ( 6 x. 9 ) / 3 ) = ; 1 8 |
| 41 | 28 29 40 | 3eqtri | |- ( 6 lcm 9 ) = ; 1 8 |