This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcdnn | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 2 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 3 | lcmgcd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 5 | nnmulcl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) | |
| 6 | 5 | nnnn0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
| 7 | nn0re | ⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → ( 𝑀 · 𝑁 ) ∈ ℝ ) | |
| 8 | nn0ge0 | ⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → 0 ≤ ( 𝑀 · 𝑁 ) ) | |
| 9 | 7 8 | jca | ⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → ( ( 𝑀 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 · 𝑁 ) ) ) |
| 10 | absid | ⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 · 𝑁 ) ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) | |
| 11 | 6 9 10 | 3syl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |
| 12 | 4 11 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 lcm 𝑁 ) · ( 𝑀 gcd 𝑁 ) ) = ( 𝑀 · 𝑁 ) ) |