This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-gcd . (Contributed by AV, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-gcd | ⊢ ( - 6 gcd 9 ) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn | ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi | ⊢ 6 ∈ ℤ |
| 3 | 9nn | ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi | ⊢ 9 ∈ ℤ |
| 5 | neggcd | ⊢ ( ( 6 ∈ ℤ ∧ 9 ∈ ℤ ) → ( - 6 gcd 9 ) = ( 6 gcd 9 ) ) | |
| 6 | 2 4 5 | mp2an | ⊢ ( - 6 gcd 9 ) = ( 6 gcd 9 ) |
| 7 | 6cn | ⊢ 6 ∈ ℂ | |
| 8 | 3cn | ⊢ 3 ∈ ℂ | |
| 9 | 6p3e9 | ⊢ ( 6 + 3 ) = 9 | |
| 10 | 7 8 9 | addcomli | ⊢ ( 3 + 6 ) = 9 |
| 11 | 10 | eqcomi | ⊢ 9 = ( 3 + 6 ) |
| 12 | 11 | oveq2i | ⊢ ( 6 gcd 9 ) = ( 6 gcd ( 3 + 6 ) ) |
| 13 | 3z | ⊢ 3 ∈ ℤ | |
| 14 | gcdcom | ⊢ ( ( 6 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 6 gcd 3 ) = ( 3 gcd 6 ) ) | |
| 15 | 2 13 14 | mp2an | ⊢ ( 6 gcd 3 ) = ( 3 gcd 6 ) |
| 16 | 3p3e6 | ⊢ ( 3 + 3 ) = 6 | |
| 17 | 16 | eqcomi | ⊢ 6 = ( 3 + 3 ) |
| 18 | 17 | oveq2i | ⊢ ( 3 gcd 6 ) = ( 3 gcd ( 3 + 3 ) ) |
| 19 | 15 18 | eqtri | ⊢ ( 6 gcd 3 ) = ( 3 gcd ( 3 + 3 ) ) |
| 20 | gcdadd | ⊢ ( ( 6 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 6 gcd 3 ) = ( 6 gcd ( 3 + 6 ) ) ) | |
| 21 | 2 13 20 | mp2an | ⊢ ( 6 gcd 3 ) = ( 6 gcd ( 3 + 6 ) ) |
| 22 | gcdid | ⊢ ( 3 ∈ ℤ → ( 3 gcd 3 ) = ( abs ‘ 3 ) ) | |
| 23 | 13 22 | ax-mp | ⊢ ( 3 gcd 3 ) = ( abs ‘ 3 ) |
| 24 | gcdadd | ⊢ ( ( 3 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 3 gcd 3 ) = ( 3 gcd ( 3 + 3 ) ) ) | |
| 25 | 13 13 24 | mp2an | ⊢ ( 3 gcd 3 ) = ( 3 gcd ( 3 + 3 ) ) |
| 26 | 3re | ⊢ 3 ∈ ℝ | |
| 27 | 0re | ⊢ 0 ∈ ℝ | |
| 28 | 3pos | ⊢ 0 < 3 | |
| 29 | 27 26 28 | ltleii | ⊢ 0 ≤ 3 |
| 30 | absid | ⊢ ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) → ( abs ‘ 3 ) = 3 ) | |
| 31 | 26 29 30 | mp2an | ⊢ ( abs ‘ 3 ) = 3 |
| 32 | 23 25 31 | 3eqtr3i | ⊢ ( 3 gcd ( 3 + 3 ) ) = 3 |
| 33 | 19 21 32 | 3eqtr3i | ⊢ ( 6 gcd ( 3 + 6 ) ) = 3 |
| 34 | 12 33 | eqtri | ⊢ ( 6 gcd 9 ) = 3 |
| 35 | 6 34 | eqtri | ⊢ ( - 6 gcd 9 ) = 3 |