This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-prmo : ( #p1 0 ) = 2 x. 3 x. 5 x. 7 . (Contributed by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-prmo | ⊢ ( #p ‘ ; 1 0 ) = ; ; 2 1 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
| 2 | prmonn2 | ⊢ ( ; 1 0 ∈ ℕ → ( #p ‘ ; 1 0 ) = if ( ; 1 0 ∈ ℙ , ( ( #p ‘ ( ; 1 0 − 1 ) ) · ; 1 0 ) , ( #p ‘ ( ; 1 0 − 1 ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ ; 1 0 ) = if ( ; 1 0 ∈ ℙ , ( ( #p ‘ ( ; 1 0 − 1 ) ) · ; 1 0 ) , ( #p ‘ ( ; 1 0 − 1 ) ) ) |
| 4 | 10nprm | ⊢ ¬ ; 1 0 ∈ ℙ | |
| 5 | 4 | iffalsei | ⊢ if ( ; 1 0 ∈ ℙ , ( ( #p ‘ ( ; 1 0 − 1 ) ) · ; 1 0 ) , ( #p ‘ ( ; 1 0 − 1 ) ) ) = ( #p ‘ ( ; 1 0 − 1 ) ) |
| 6 | 3 5 | eqtri | ⊢ ( #p ‘ ; 1 0 ) = ( #p ‘ ( ; 1 0 − 1 ) ) |
| 7 | 10m1e9 | ⊢ ( ; 1 0 − 1 ) = 9 | |
| 8 | 7 | fveq2i | ⊢ ( #p ‘ ( ; 1 0 − 1 ) ) = ( #p ‘ 9 ) |
| 9 | 9nn | ⊢ 9 ∈ ℕ | |
| 10 | prmonn2 | ⊢ ( 9 ∈ ℕ → ( #p ‘ 9 ) = if ( 9 ∈ ℙ , ( ( #p ‘ ( 9 − 1 ) ) · 9 ) , ( #p ‘ ( 9 − 1 ) ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( #p ‘ 9 ) = if ( 9 ∈ ℙ , ( ( #p ‘ ( 9 − 1 ) ) · 9 ) , ( #p ‘ ( 9 − 1 ) ) ) |
| 12 | 9nprm | ⊢ ¬ 9 ∈ ℙ | |
| 13 | 12 | iffalsei | ⊢ if ( 9 ∈ ℙ , ( ( #p ‘ ( 9 − 1 ) ) · 9 ) , ( #p ‘ ( 9 − 1 ) ) ) = ( #p ‘ ( 9 − 1 ) ) |
| 14 | 11 13 | eqtri | ⊢ ( #p ‘ 9 ) = ( #p ‘ ( 9 − 1 ) ) |
| 15 | 9m1e8 | ⊢ ( 9 − 1 ) = 8 | |
| 16 | 15 | fveq2i | ⊢ ( #p ‘ ( 9 − 1 ) ) = ( #p ‘ 8 ) |
| 17 | 8nn | ⊢ 8 ∈ ℕ | |
| 18 | prmonn2 | ⊢ ( 8 ∈ ℕ → ( #p ‘ 8 ) = if ( 8 ∈ ℙ , ( ( #p ‘ ( 8 − 1 ) ) · 8 ) , ( #p ‘ ( 8 − 1 ) ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( #p ‘ 8 ) = if ( 8 ∈ ℙ , ( ( #p ‘ ( 8 − 1 ) ) · 8 ) , ( #p ‘ ( 8 − 1 ) ) ) |
| 20 | 8nprm | ⊢ ¬ 8 ∈ ℙ | |
| 21 | 20 | iffalsei | ⊢ if ( 8 ∈ ℙ , ( ( #p ‘ ( 8 − 1 ) ) · 8 ) , ( #p ‘ ( 8 − 1 ) ) ) = ( #p ‘ ( 8 − 1 ) ) |
| 22 | 19 21 | eqtri | ⊢ ( #p ‘ 8 ) = ( #p ‘ ( 8 − 1 ) ) |
| 23 | 8m1e7 | ⊢ ( 8 − 1 ) = 7 | |
| 24 | 23 | fveq2i | ⊢ ( #p ‘ ( 8 − 1 ) ) = ( #p ‘ 7 ) |
| 25 | 7nn | ⊢ 7 ∈ ℕ | |
| 26 | prmonn2 | ⊢ ( 7 ∈ ℕ → ( #p ‘ 7 ) = if ( 7 ∈ ℙ , ( ( #p ‘ ( 7 − 1 ) ) · 7 ) , ( #p ‘ ( 7 − 1 ) ) ) ) | |
| 27 | 25 26 | ax-mp | ⊢ ( #p ‘ 7 ) = if ( 7 ∈ ℙ , ( ( #p ‘ ( 7 − 1 ) ) · 7 ) , ( #p ‘ ( 7 − 1 ) ) ) |
| 28 | 7prm | ⊢ 7 ∈ ℙ | |
| 29 | 28 | iftruei | ⊢ if ( 7 ∈ ℙ , ( ( #p ‘ ( 7 − 1 ) ) · 7 ) , ( #p ‘ ( 7 − 1 ) ) ) = ( ( #p ‘ ( 7 − 1 ) ) · 7 ) |
| 30 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 31 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 32 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 33 | 7m1e6 | ⊢ ( 7 − 1 ) = 6 | |
| 34 | 33 | fveq2i | ⊢ ( #p ‘ ( 7 − 1 ) ) = ( #p ‘ 6 ) |
| 35 | prmo6 | ⊢ ( #p ‘ 6 ) = ; 3 0 | |
| 36 | 34 35 | eqtri | ⊢ ( #p ‘ ( 7 − 1 ) ) = ; 3 0 |
| 37 | 7cn | ⊢ 7 ∈ ℂ | |
| 38 | 3cn | ⊢ 3 ∈ ℂ | |
| 39 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 40 | 37 38 39 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
| 41 | 37 | mul02i | ⊢ ( 0 · 7 ) = 0 |
| 42 | 30 31 32 36 40 41 | decmul1 | ⊢ ( ( #p ‘ ( 7 − 1 ) ) · 7 ) = ; ; 2 1 0 |
| 43 | 27 29 42 | 3eqtri | ⊢ ( #p ‘ 7 ) = ; ; 2 1 0 |
| 44 | 22 24 43 | 3eqtri | ⊢ ( #p ‘ 8 ) = ; ; 2 1 0 |
| 45 | 14 16 44 | 3eqtri | ⊢ ( #p ‘ 9 ) = ; ; 2 1 0 |
| 46 | 6 8 45 | 3eqtri | ⊢ ( #p ‘ ; 1 0 ) = ; ; 2 1 0 |