This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the lcm operator. For example, ( 6 lcm 9 ) = 1 8 ( ex-lcm ). (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lcm | ⊢ lcm = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clcm | ⊢ lcm | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cz | ⊢ ℤ | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cc0 | ⊢ 0 | |
| 6 | 4 5 | wceq | ⊢ 𝑥 = 0 |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 5 | wceq | ⊢ 𝑦 = 0 |
| 9 | 6 8 | wo | ⊢ ( 𝑥 = 0 ∨ 𝑦 = 0 ) |
| 10 | vn | ⊢ 𝑛 | |
| 11 | cn | ⊢ ℕ | |
| 12 | cdvds | ⊢ ∥ | |
| 13 | 10 | cv | ⊢ 𝑛 |
| 14 | 4 13 12 | wbr | ⊢ 𝑥 ∥ 𝑛 |
| 15 | 7 13 12 | wbr | ⊢ 𝑦 ∥ 𝑛 |
| 16 | 14 15 | wa | ⊢ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) |
| 17 | 16 10 11 | crab | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } |
| 18 | cr | ⊢ ℝ | |
| 19 | clt | ⊢ < | |
| 20 | 17 18 19 | cinf | ⊢ inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) |
| 21 | 9 5 20 | cif | ⊢ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) |
| 22 | 1 3 2 2 21 | cmpo | ⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 23 | 0 22 | wceq | ⊢ lcm = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) |