This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmet.1 | ⊢ 𝐶 = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) | |
| cncfmet.2 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) | ||
| cncfmet.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| cncfmet.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | cncfmet | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmet.1 | ⊢ 𝐶 = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) | |
| 2 | cncfmet.2 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) | |
| 3 | cncfmet.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 4 | cncfmet.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 5 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐴 ⊆ ℂ ) | |
| 6 | simprl | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 7 | simprr | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) | |
| 8 | 1 | oveqi | ⊢ ( 𝑥 𝐶 𝑤 ) = ( 𝑥 ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) 𝑤 ) |
| 9 | ovres | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) 𝑤 ) = ( 𝑥 ( abs ∘ − ) 𝑤 ) ) | |
| 10 | 8 9 | eqtrid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 𝐶 𝑤 ) = ( 𝑥 ( abs ∘ − ) 𝑤 ) ) |
| 11 | 10 | ad2ant2l | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑥 𝐶 𝑤 ) = ( 𝑥 ( abs ∘ − ) 𝑤 ) ) |
| 12 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) | |
| 13 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℂ ) | |
| 14 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 15 | 14 | cnmetdval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑤 ) = ( abs ‘ ( 𝑥 − 𝑤 ) ) ) |
| 16 | 12 13 15 | syl2an | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑥 ( abs ∘ − ) 𝑤 ) = ( abs ‘ ( 𝑥 − 𝑤 ) ) ) |
| 17 | 11 16 | eqtrd | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑥 𝐶 𝑤 ) = ( abs ‘ ( 𝑥 − 𝑤 ) ) ) |
| 18 | 5 6 5 7 17 | syl22anc | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑥 𝐶 𝑤 ) = ( abs ‘ ( 𝑥 − 𝑤 ) ) ) |
| 19 | 18 | breq1d | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑥 𝐶 𝑤 ) < 𝑧 ↔ ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 ) ) |
| 20 | ffvelcdm | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 21 | 20 | ad2ant2lr | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 22 | ffvelcdm | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝐵 ) | |
| 23 | 22 | ad2ant2l | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝐵 ) |
| 24 | 2 | oveqi | ⊢ ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ( 𝑓 ‘ 𝑤 ) ) |
| 25 | ovres | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑥 ) ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ( 𝑓 ‘ 𝑤 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑤 ) ) ) | |
| 26 | 24 25 | eqtrid | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑓 ‘ 𝑤 ) ∈ 𝐵 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑤 ) ) ) |
| 27 | 21 23 26 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑤 ) ) ) |
| 28 | simpllr | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐵 ⊆ ℂ ) | |
| 29 | 28 21 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 30 | 28 23 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ ℂ ) |
| 31 | 14 | cnmetdval | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑓 ‘ 𝑤 ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 32 | 29 30 31 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 33 | 27 32 | eqtrd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 34 | 33 | breq1d | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 35 | 19 34 | imbi12d | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 36 | 35 | anassrs | ⊢ ( ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 37 | 36 | ralbidva | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 38 | 37 | rexbidv | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 39 | 38 | ralbidv | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 40 | 39 | ralbidva | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝑓 : 𝐴 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 41 | 40 | pm5.32da | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) |
| 42 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 43 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ 𝐴 ) ) | |
| 44 | 42 43 | mpan | ⊢ ( 𝐴 ⊆ ℂ → ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( ∞Met ‘ 𝐴 ) ) |
| 45 | 1 44 | eqeltrid | ⊢ ( 𝐴 ⊆ ℂ → 𝐶 ∈ ( ∞Met ‘ 𝐴 ) ) |
| 46 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐵 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) | |
| 47 | 42 46 | mpan | ⊢ ( 𝐵 ⊆ ℂ → ( ( abs ∘ − ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
| 48 | 2 47 | eqeltrid | ⊢ ( 𝐵 ⊆ ℂ → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 49 | 3 4 | metcn | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝐴 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 50 | 45 48 49 | syl2an | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( 𝑥 𝐶 𝑤 ) < 𝑧 → ( ( 𝑓 ‘ 𝑥 ) 𝐷 ( 𝑓 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 51 | elcncf | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) | |
| 52 | 41 50 51 | 3bitr4rd | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 53 | 52 | eqrdv | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) = ( 𝐽 Cn 𝐾 ) ) |