This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1varpw.q | ⊢ 𝑄 = ( eval1 ‘ 𝑅 ) | |
| evl1varpw.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) | ||
| evl1varpw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evl1varpw.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| evl1varpw.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1varpw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| evl1varpw.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1varpw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘ 𝑊 ) | ||
| evl1scvarpw.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| evl1scvarpw.s | ⊢ 𝑆 = ( 𝑅 ↑s 𝐵 ) | ||
| evl1scvarpw.t2 | ⊢ ∙ = ( .r ‘ 𝑆 ) | ||
| evl1scvarpw.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | ||
| evl1scvarpw.f | ⊢ 𝐹 = ( .g ‘ 𝑀 ) | ||
| Assertion | evl1scvarpw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) = ( ( 𝐵 × { 𝐴 } ) ∙ ( 𝑁 𝐹 ( 𝑄 ‘ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.q | ⊢ 𝑄 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1varpw.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1varpw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 4 | evl1varpw.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | evl1varpw.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 6 | evl1varpw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | evl1varpw.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 8 | evl1varpw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 9 | evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘ 𝑊 ) | |
| 10 | evl1scvarpw.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 11 | evl1scvarpw.s | ⊢ 𝑆 = ( 𝑅 ↑s 𝐵 ) | |
| 12 | evl1scvarpw.t2 | ⊢ ∙ = ( .r ‘ 𝑆 ) | |
| 13 | evl1scvarpw.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | |
| 14 | evl1scvarpw.f | ⊢ 𝐹 = ( .g ‘ 𝑀 ) | |
| 15 | 2 | ply1assa | ⊢ ( 𝑅 ∈ CRing → 𝑊 ∈ AssAlg ) |
| 16 | 7 15 | syl | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
| 17 | 10 5 | eleqtrdi | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 18 | 2 | ply1sca | ⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 19 | 18 | eqcomd | ⊢ ( 𝑅 ∈ CRing → ( Scalar ‘ 𝑊 ) = 𝑅 ) |
| 20 | 7 19 | syl | ⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = 𝑅 ) |
| 21 | 20 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝑅 ) ) |
| 22 | 17 21 | eleqtrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 24 | 3 23 | mgpbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) |
| 25 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 26 | 7 25 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 27 | 2 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ Ring ) |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 29 | 3 | ringmgp | ⊢ ( 𝑊 ∈ Ring → 𝐺 ∈ Mnd ) |
| 30 | 28 29 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 31 | 4 2 23 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 32 | 26 31 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 33 | 24 6 30 8 32 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑊 ) ) |
| 34 | eqid | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) | |
| 35 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 36 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 37 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 38 | 34 35 36 23 37 9 | asclmul1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ( .r ‘ 𝑊 ) ( 𝑁 ↑ 𝑋 ) ) = ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) |
| 39 | 16 22 33 38 | syl3anc | ⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ( .r ‘ 𝑊 ) ( 𝑁 ↑ 𝑋 ) ) = ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) |
| 40 | 39 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) = ( ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ( .r ‘ 𝑊 ) ( 𝑁 ↑ 𝑋 ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) = ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ( .r ‘ 𝑊 ) ( 𝑁 ↑ 𝑋 ) ) ) ) |
| 42 | 1 2 11 5 | evl1rhm | ⊢ ( 𝑅 ∈ CRing → 𝑄 ∈ ( 𝑊 RingHom 𝑆 ) ) |
| 43 | 7 42 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑆 ) ) |
| 44 | 2 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ LMod ) |
| 45 | 26 44 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 46 | 34 35 28 45 36 23 | asclf | ⊢ ( 𝜑 → ( algSc ‘ 𝑊 ) : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 47 | 46 22 | ffvelcdmd | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝑊 ) ) |
| 48 | 23 37 12 | rhmmul | ⊢ ( ( 𝑄 ∈ ( 𝑊 RingHom 𝑆 ) ∧ ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑊 ) ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ( .r ‘ 𝑊 ) ( 𝑁 ↑ 𝑋 ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ) ∙ ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ) ) |
| 49 | 43 47 33 48 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ( .r ‘ 𝑊 ) ( 𝑁 ↑ 𝑋 ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ) ∙ ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ) ) |
| 50 | 1 2 5 34 | evl1sca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐵 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ) = ( 𝐵 × { 𝐴 } ) ) |
| 51 | 7 10 50 | syl2anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ) = ( 𝐵 × { 𝐴 } ) ) |
| 52 | 1 2 3 4 5 6 7 8 | evl1varpw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |
| 53 | 11 | fveq2i | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) |
| 54 | 13 53 | eqtri | ⊢ 𝑀 = ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) |
| 55 | 54 | fveq2i | ⊢ ( .g ‘ 𝑀 ) = ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 56 | 14 55 | eqtri | ⊢ 𝐹 = ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 57 | 56 | a1i | ⊢ ( 𝜑 → 𝐹 = ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) |
| 58 | 57 | eqcomd | ⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = 𝐹 ) |
| 59 | 58 | oveqd | ⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑄 ‘ 𝑋 ) ) = ( 𝑁 𝐹 ( 𝑄 ‘ 𝑋 ) ) ) |
| 60 | 52 59 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 𝐹 ( 𝑄 ‘ 𝑋 ) ) ) |
| 61 | 51 60 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ 𝐴 ) ) ∙ ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ) = ( ( 𝐵 × { 𝐴 } ) ∙ ( 𝑁 𝐹 ( 𝑄 ‘ 𝑋 ) ) ) ) |
| 62 | 41 49 61 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) = ( ( 𝐵 × { 𝐴 } ) ∙ ( 𝑁 𝐹 ( 𝑄 ‘ 𝑋 ) ) ) ) |