This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqg0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eqg0subg.s | ⊢ 𝑆 = { 0 } | ||
| eqg0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| eqg0subg.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | eqg0subg | ⊢ ( 𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqg0subg.s | ⊢ 𝑆 = { 0 } | |
| 3 | eqg0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | eqg0subg.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| 5 | 1 | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 | 3 | subgss | ⊢ ( { 0 } ∈ ( SubGrp ‘ 𝐺 ) → { 0 } ⊆ 𝐵 ) |
| 7 | 5 6 | syl | ⊢ ( 𝐺 ∈ Grp → { 0 } ⊆ 𝐵 ) |
| 8 | 2 7 | eqsstrid | ⊢ ( 𝐺 ∈ Grp → 𝑆 ⊆ 𝐵 ) |
| 9 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | 3 9 10 4 | eqgfval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ) → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) } ) |
| 12 | 8 11 | mpdan | ⊢ ( 𝐺 ∈ Grp → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) } ) |
| 13 | opabresid | ⊢ ( I ↾ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) } | |
| 14 | simpl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) → 𝑥 ∈ 𝐵 ) | |
| 15 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 16 | 15 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 17 | 16 | biimpac | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) → 𝑦 ∈ 𝐵 ) |
| 18 | simpr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 19 | 14 17 18 | jca31 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 = 𝑥 ) ) |
| 20 | simpl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 21 | 20 | anim1i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 = 𝑥 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ) |
| 22 | 21 | a1i | ⊢ ( 𝐺 ∈ Grp → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 = 𝑥 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ) ) |
| 23 | 19 22 | impbid2 | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 = 𝑥 ) ) ) |
| 24 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 25 | simpr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 27 | 20 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 28 | 3 9 24 26 27 | grpinv11 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ↔ 𝑦 = 𝑥 ) ) |
| 29 | 3 9 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 30 | 29 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 31 | 3 10 1 9 | grpinvid2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ) ) |
| 32 | 24 26 30 31 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ) ) |
| 33 | 28 32 | bitr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 = 𝑥 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ) ) |
| 34 | 33 | pm5.32da | ⊢ ( 𝐺 ∈ Grp → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 = 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ) ) ) |
| 35 | vex | ⊢ 𝑥 ∈ V | |
| 36 | vex | ⊢ 𝑦 ∈ V | |
| 37 | 35 36 | prss | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 38 | 37 | a1i | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) ) |
| 39 | 2 | eleq2i | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ { 0 } ) |
| 40 | ovex | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ V | |
| 41 | 40 | elsn | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ { 0 } ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ) |
| 42 | 39 41 | bitr2i | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 43 | 42 | a1i | ⊢ ( 𝐺 ∈ Grp → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 44 | 38 43 | anbi12d | ⊢ ( 𝐺 ∈ Grp → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) = 0 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 45 | 23 34 44 | 3bitrd | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 46 | 45 | opabbidv | ⊢ ( 𝐺 ∈ Grp → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) } ) |
| 47 | 13 46 | eqtr2id | ⊢ ( 𝐺 ∈ Grp → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) } = ( I ↾ 𝐵 ) ) |
| 48 | 12 47 | eqtrd | ⊢ ( 𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵 ) ) |