This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqg0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eqg0subg.s | ⊢ 𝑆 = { 0 } | ||
| eqg0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| eqg0subg.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | eqg0subgecsn | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] 𝑅 = { 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0subg.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqg0subg.s | ⊢ 𝑆 = { 0 } | |
| 3 | eqg0subg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | eqg0subg.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| 5 | df-ec | ⊢ [ 𝑋 ] 𝑅 = ( 𝑅 “ { 𝑋 } ) | |
| 6 | 1 2 3 4 | eqg0subg | ⊢ ( 𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝑅 = ( I ↾ 𝐵 ) ) |
| 8 | 7 | imaeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 “ { 𝑋 } ) = ( ( I ↾ 𝐵 ) “ { 𝑋 } ) ) |
| 9 | snssi | ⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 } ⊆ 𝐵 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → { 𝑋 } ⊆ 𝐵 ) |
| 11 | resima2 | ⊢ ( { 𝑋 } ⊆ 𝐵 → ( ( I ↾ 𝐵 ) “ { 𝑋 } ) = ( I “ { 𝑋 } ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) “ { 𝑋 } ) = ( I “ { 𝑋 } ) ) |
| 13 | imai | ⊢ ( I “ { 𝑋 } ) = { 𝑋 } | |
| 14 | 12 13 | eqtrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) “ { 𝑋 } ) = { 𝑋 } ) |
| 15 | 8 14 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 “ { 𝑋 } ) = { 𝑋 } ) |
| 16 | 5 15 | eqtrid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] 𝑅 = { 𝑋 } ) |