This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqgval.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqgval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| eqgval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| eqgval.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | eqgfval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqgval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | eqgval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | eqgval.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| 5 | elex | ⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) | |
| 6 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 7 | 6 | ssex | ⊢ ( 𝑆 ⊆ 𝑋 → 𝑆 ∈ V ) |
| 8 | simpl | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → 𝑔 = 𝐺 ) | |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 10 | 9 1 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 11 | 10 | sseq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑔 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑋 ) ) |
| 12 | 8 | fveq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
| 13 | 12 3 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( +g ‘ 𝑔 ) = + ) |
| 14 | 8 | fveq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( invg ‘ 𝑔 ) = ( invg ‘ 𝐺 ) ) |
| 15 | 14 2 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( invg ‘ 𝑔 ) = 𝑁 ) |
| 16 | 15 | fveq1d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑁 ‘ 𝑥 ) ) |
| 17 | eqidd | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → 𝑦 = 𝑦 ) | |
| 18 | 13 16 17 | oveq123d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) ( +g ‘ 𝑔 ) 𝑦 ) = ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ) |
| 19 | simpr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) | |
| 20 | 18 19 | eleq12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( ( ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) ( +g ‘ 𝑔 ) 𝑦 ) ∈ 𝑠 ↔ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) ) |
| 21 | 11 20 | anbi12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑔 ) ∧ ( ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) ( +g ‘ 𝑔 ) 𝑦 ) ∈ 𝑠 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) ) ) |
| 22 | 21 | opabbidv | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑔 ) ∧ ( ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) ( +g ‘ 𝑔 ) 𝑦 ) ∈ 𝑠 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |
| 23 | df-eqg | ⊢ ~QG = ( 𝑔 ∈ V , 𝑠 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑔 ) ∧ ( ( ( invg ‘ 𝑔 ) ‘ 𝑥 ) ( +g ‘ 𝑔 ) 𝑦 ) ∈ 𝑠 ) } ) | |
| 24 | 6 6 | xpex | ⊢ ( 𝑋 × 𝑋 ) ∈ V |
| 25 | simpl | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) → { 𝑥 , 𝑦 } ⊆ 𝑋 ) | |
| 26 | vex | ⊢ 𝑥 ∈ V | |
| 27 | vex | ⊢ 𝑦 ∈ V | |
| 28 | 26 27 | prss | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑋 ) |
| 29 | 25 28 | sylibr | ⊢ ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 30 | 29 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) } |
| 31 | df-xp | ⊢ ( 𝑋 × 𝑋 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) } | |
| 32 | 30 31 | sseqtrri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ⊆ ( 𝑋 × 𝑋 ) |
| 33 | 24 32 | ssexi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ∈ V |
| 34 | 22 23 33 | ovmpoa | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 ~QG 𝑆 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |
| 35 | 4 34 | eqtrid | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |
| 36 | 5 7 35 | syl2an | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |