This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset equivalence relation for the trivial (zero) subgroup of a group is the identity relation restricted to the base set of the group. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqg0subg.0 | |- .0. = ( 0g ` G ) |
|
| eqg0subg.s | |- S = { .0. } |
||
| eqg0subg.b | |- B = ( Base ` G ) |
||
| eqg0subg.r | |- R = ( G ~QG S ) |
||
| Assertion | eqg0subg | |- ( G e. Grp -> R = ( _I |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0subg.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eqg0subg.s | |- S = { .0. } |
|
| 3 | eqg0subg.b | |- B = ( Base ` G ) |
|
| 4 | eqg0subg.r | |- R = ( G ~QG S ) |
|
| 5 | 1 | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 6 | 3 | subgss | |- ( { .0. } e. ( SubGrp ` G ) -> { .0. } C_ B ) |
| 7 | 5 6 | syl | |- ( G e. Grp -> { .0. } C_ B ) |
| 8 | 2 7 | eqsstrid | |- ( G e. Grp -> S C_ B ) |
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | 3 9 10 4 | eqgfval | |- ( ( G e. Grp /\ S C_ B ) -> R = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) |
| 12 | 8 11 | mpdan | |- ( G e. Grp -> R = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) |
| 13 | opabresid | |- ( _I |` B ) = { <. x , y >. | ( x e. B /\ y = x ) } |
|
| 14 | simpl | |- ( ( x e. B /\ y = x ) -> x e. B ) |
|
| 15 | eleq1w | |- ( x = y -> ( x e. B <-> y e. B ) ) |
|
| 16 | 15 | equcoms | |- ( y = x -> ( x e. B <-> y e. B ) ) |
| 17 | 16 | biimpac | |- ( ( x e. B /\ y = x ) -> y e. B ) |
| 18 | simpr | |- ( ( x e. B /\ y = x ) -> y = x ) |
|
| 19 | 14 17 18 | jca31 | |- ( ( x e. B /\ y = x ) -> ( ( x e. B /\ y e. B ) /\ y = x ) ) |
| 20 | simpl | |- ( ( x e. B /\ y e. B ) -> x e. B ) |
|
| 21 | 20 | anim1i | |- ( ( ( x e. B /\ y e. B ) /\ y = x ) -> ( x e. B /\ y = x ) ) |
| 22 | 21 | a1i | |- ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ y = x ) -> ( x e. B /\ y = x ) ) ) |
| 23 | 19 22 | impbid2 | |- ( G e. Grp -> ( ( x e. B /\ y = x ) <-> ( ( x e. B /\ y e. B ) /\ y = x ) ) ) |
| 24 | simpl | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> G e. Grp ) |
|
| 25 | simpr | |- ( ( x e. B /\ y e. B ) -> y e. B ) |
|
| 26 | 25 | adantl | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
| 27 | 20 | adantl | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
| 28 | 3 9 24 26 27 | grpinv11 | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> y = x ) ) |
| 29 | 3 9 | grpinvcl | |- ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) |
| 30 | 29 | adantrr | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( invg ` G ) ` x ) e. B ) |
| 31 | 3 10 1 9 | grpinvid2 | |- ( ( G e. Grp /\ y e. B /\ ( ( invg ` G ) ` x ) e. B ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) |
| 32 | 24 26 30 31 | syl3anc | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) |
| 33 | 28 32 | bitr3d | |- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( y = x <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) |
| 34 | 33 | pm5.32da | |- ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ y = x ) <-> ( ( x e. B /\ y e. B ) /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) ) |
| 35 | vex | |- x e. _V |
|
| 36 | vex | |- y e. _V |
|
| 37 | 35 36 | prss | |- ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) |
| 38 | 37 | a1i | |- ( G e. Grp -> ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) ) |
| 39 | 2 | eleq2i | |- ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. { .0. } ) |
| 40 | ovex | |- ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. _V |
|
| 41 | 40 | elsn | |- ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. { .0. } <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) |
| 42 | 39 41 | bitr2i | |- ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) |
| 43 | 42 | a1i | |- ( G e. Grp -> ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) |
| 44 | 38 43 | anbi12d | |- ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) <-> ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) ) |
| 45 | 23 34 44 | 3bitrd | |- ( G e. Grp -> ( ( x e. B /\ y = x ) <-> ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) ) |
| 46 | 45 | opabbidv | |- ( G e. Grp -> { <. x , y >. | ( x e. B /\ y = x ) } = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) |
| 47 | 13 46 | eqtr2id | |- ( G e. Grp -> { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } = ( _I |` B ) ) |
| 48 | 12 47 | eqtrd | |- ( G e. Grp -> R = ( _I |` B ) ) |