This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quselbas.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| quselbas.u | ⊢ 𝑈 = ( 𝐺 /s ∼ ) | ||
| quselbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | quselbas | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quselbas.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 2 | quselbas.u | ⊢ 𝑈 = ( 𝐺 /s ∼ ) | |
| 3 | quselbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | 2 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → 𝑈 = ( 𝐺 /s ∼ ) ) |
| 5 | 3 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 6 | 1 | ovexi | ⊢ ∼ ∈ V |
| 7 | 6 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ∼ ∈ V ) |
| 8 | simpl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → 𝐺 ∈ 𝑉 ) | |
| 9 | 4 5 7 8 | qusbas | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ( 𝐵 / ∼ ) = ( Base ‘ 𝑈 ) ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ( Base ‘ 𝑈 ) = ( 𝐵 / ∼ ) ) |
| 11 | 10 | eleq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ 𝑋 ∈ ( 𝐵 / ∼ ) ) ) |
| 12 | elqsg | ⊢ ( 𝑋 ∈ 𝑊 → ( 𝑋 ∈ ( 𝐵 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ( 𝑋 ∈ ( 𝐵 / ∼ ) ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) ) |
| 14 | 11 13 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ) → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) ) |