This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an epimorphism and F is a section of G , then G is an inverse of F and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| sectepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| sectepi.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| sectepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| sectepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| sectepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| episect.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| episect.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) | ||
| episect.2 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | ||
| Assertion | episect | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | sectepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 3 | sectepi.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 4 | sectepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | sectepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | sectepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | episect.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 8 | episect.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) | |
| 9 | episect.2 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | |
| 10 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Inv ‘ ( oppCat ‘ 𝐶 ) ) = ( Inv ‘ ( oppCat ‘ 𝐶 ) ) | |
| 12 | 1 10 4 6 5 7 11 | oppcinv | ⊢ ( 𝜑 → ( 𝑌 ( Inv ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝑁 𝑌 ) ) |
| 13 | 10 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 14 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) | |
| 15 | eqid | ⊢ ( Sect ‘ ( oppCat ‘ 𝐶 ) ) = ( Sect ‘ ( oppCat ‘ 𝐶 ) ) | |
| 16 | 10 | oppccat | ⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 18 | 10 4 14 2 | oppcmon | ⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 19 | 8 18 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
| 20 | 1 10 4 5 6 3 15 | oppcsect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |
| 21 | 9 20 | mpbird | ⊢ ( 𝜑 → 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 ) |
| 22 | 13 14 15 17 6 5 11 19 21 | monsect | ⊢ ( 𝜑 → 𝐹 ( 𝑌 ( Inv ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) |
| 23 | 12 22 | breqdi | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |