This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcmon.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppcmon.m | ⊢ 𝑀 = ( Mono ‘ 𝑂 ) | ||
| oppcmon.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| Assertion | oppcmon | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑌 𝐸 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcmon.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | oppcmon.m | ⊢ 𝑀 = ( Mono ‘ 𝑂 ) | |
| 4 | oppcmon.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝐶 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( oppCat ‘ 𝑐 ) = 𝑂 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝑐 = 𝐶 → ( Mono ‘ ( oppCat ‘ 𝑐 ) ) = ( Mono ‘ 𝑂 ) ) |
| 8 | 7 3 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Mono ‘ ( oppCat ‘ 𝑐 ) ) = 𝑀 ) |
| 9 | 8 | tposeqd | ⊢ ( 𝑐 = 𝐶 → tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) = tpos 𝑀 ) |
| 10 | df-epi | ⊢ Epi = ( 𝑐 ∈ Cat ↦ tpos ( Mono ‘ ( oppCat ‘ 𝑐 ) ) ) | |
| 11 | 3 | fvexi | ⊢ 𝑀 ∈ V |
| 12 | 11 | tposex | ⊢ tpos 𝑀 ∈ V |
| 13 | 9 10 12 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( Epi ‘ 𝐶 ) = tpos 𝑀 ) |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → ( Epi ‘ 𝐶 ) = tpos 𝑀 ) |
| 15 | 4 14 | eqtrid | ⊢ ( 𝜑 → 𝐸 = tpos 𝑀 ) |
| 16 | 15 | oveqd | ⊢ ( 𝜑 → ( 𝑌 𝐸 𝑋 ) = ( 𝑌 tpos 𝑀 𝑋 ) ) |
| 17 | ovtpos | ⊢ ( 𝑌 tpos 𝑀 𝑋 ) = ( 𝑋 𝑀 𝑌 ) | |
| 18 | 16 17 | eqtr2di | ⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) = ( 𝑌 𝐸 𝑋 ) ) |