This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an epimorphism and F is a section of G , then G is an inverse of F and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectepi.b | |- B = ( Base ` C ) |
|
| sectepi.e | |- E = ( Epi ` C ) |
||
| sectepi.s | |- S = ( Sect ` C ) |
||
| sectepi.c | |- ( ph -> C e. Cat ) |
||
| sectepi.x | |- ( ph -> X e. B ) |
||
| sectepi.y | |- ( ph -> Y e. B ) |
||
| episect.n | |- N = ( Inv ` C ) |
||
| episect.1 | |- ( ph -> F e. ( X E Y ) ) |
||
| episect.2 | |- ( ph -> F ( X S Y ) G ) |
||
| Assertion | episect | |- ( ph -> F ( X N Y ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectepi.b | |- B = ( Base ` C ) |
|
| 2 | sectepi.e | |- E = ( Epi ` C ) |
|
| 3 | sectepi.s | |- S = ( Sect ` C ) |
|
| 4 | sectepi.c | |- ( ph -> C e. Cat ) |
|
| 5 | sectepi.x | |- ( ph -> X e. B ) |
|
| 6 | sectepi.y | |- ( ph -> Y e. B ) |
|
| 7 | episect.n | |- N = ( Inv ` C ) |
|
| 8 | episect.1 | |- ( ph -> F e. ( X E Y ) ) |
|
| 9 | episect.2 | |- ( ph -> F ( X S Y ) G ) |
|
| 10 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 11 | eqid | |- ( Inv ` ( oppCat ` C ) ) = ( Inv ` ( oppCat ` C ) ) |
|
| 12 | 1 10 4 6 5 7 11 | oppcinv | |- ( ph -> ( Y ( Inv ` ( oppCat ` C ) ) X ) = ( X N Y ) ) |
| 13 | 10 1 | oppcbas | |- B = ( Base ` ( oppCat ` C ) ) |
| 14 | eqid | |- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
|
| 15 | eqid | |- ( Sect ` ( oppCat ` C ) ) = ( Sect ` ( oppCat ` C ) ) |
|
| 16 | 10 | oppccat | |- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 17 | 4 16 | syl | |- ( ph -> ( oppCat ` C ) e. Cat ) |
| 18 | 10 4 14 2 | oppcmon | |- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
| 19 | 8 18 | eleqtrrd | |- ( ph -> F e. ( Y ( Mono ` ( oppCat ` C ) ) X ) ) |
| 20 | 1 10 4 5 6 3 15 | oppcsect | |- ( ph -> ( G ( X ( Sect ` ( oppCat ` C ) ) Y ) F <-> F ( X S Y ) G ) ) |
| 21 | 9 20 | mpbird | |- ( ph -> G ( X ( Sect ` ( oppCat ` C ) ) Y ) F ) |
| 22 | 13 14 15 17 6 5 11 19 21 | monsect | |- ( ph -> F ( Y ( Inv ` ( oppCat ` C ) ) X ) G ) |
| 23 | 12 22 | breqdi | |- ( ph -> F ( X N Y ) G ) |