This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is an epimorphism and F is a section of G , then G is an inverse of F and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectepi.b | ||
| sectepi.e | |||
| sectepi.s | |||
| sectepi.c | |||
| sectepi.x | |||
| sectepi.y | |||
| episect.n | |||
| episect.1 | |||
| episect.2 | |||
| Assertion | episect |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectepi.b | ||
| 2 | sectepi.e | ||
| 3 | sectepi.s | ||
| 4 | sectepi.c | ||
| 5 | sectepi.x | ||
| 6 | sectepi.y | ||
| 7 | episect.n | ||
| 8 | episect.1 | ||
| 9 | episect.2 | ||
| 10 | eqid | ||
| 11 | eqid | ||
| 12 | 1 10 4 6 5 7 11 | oppcinv | |
| 13 | 10 1 | oppcbas | |
| 14 | eqid | ||
| 15 | eqid | ||
| 16 | 10 | oppccat | |
| 17 | 4 16 | syl | |
| 18 | 10 4 14 2 | oppcmon | |
| 19 | 8 18 | eleqtrrd | |
| 20 | 1 10 4 5 6 3 15 | oppcsect | |
| 21 | 9 20 | mpbird | |
| 22 | 13 14 15 17 6 5 11 19 21 | monsect | |
| 23 | 12 22 | breqdi |