This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| oppcsect.t | ⊢ 𝑇 = ( Sect ‘ 𝑂 ) | ||
| Assertion | oppcsect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑇 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 3 | oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | oppcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 7 | oppcsect.t | ⊢ 𝑇 = ( Sect ‘ 𝑂 ) | |
| 8 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 11 | 1 8 2 9 10 9 | oppcco | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 13 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 14 | 2 13 | oppcid | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 16 | 15 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 17 | 11 16 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ↔ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 18 | 17 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 19 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) | |
| 20 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 21 | 20 2 | oppchom | ⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) |
| 22 | 21 | eleq2i | ⊢ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ↔ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 23 | 20 2 | oppchom | ⊢ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) |
| 24 | 23 | eleq2i | ⊢ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ↔ 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 25 | 22 24 | anbi12ci | ⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) |
| 26 | 25 | anbi1i | ⊢ ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) |
| 27 | 19 26 | bitri | ⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) |
| 28 | df-3an | ⊢ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | |
| 29 | 18 27 28 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 30 | 2 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 31 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 32 | eqid | ⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) | |
| 33 | eqid | ⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) | |
| 34 | 2 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 36 | 30 31 32 33 7 35 4 5 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑇 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) ) |
| 37 | 1 20 8 13 6 3 4 5 | issect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 38 | 29 36 37 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑇 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ) ) |