This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppcinv.s | ⊢ 𝐼 = ( Inv ‘ 𝐶 ) | ||
| oppcinv.t | ⊢ 𝐽 = ( Inv ‘ 𝑂 ) | ||
| Assertion | oppcinv | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | oppcsect.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 3 | oppcsect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | oppcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | oppcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | oppcinv.s | ⊢ 𝐼 = ( Inv ‘ 𝐶 ) | |
| 7 | oppcinv.t | ⊢ 𝐽 = ( Inv ‘ 𝑂 ) | |
| 8 | incom | ⊢ ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) = ( ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ) | |
| 9 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Sect ‘ 𝑂 ) = ( Sect ‘ 𝑂 ) | |
| 11 | 1 2 3 5 4 9 10 | oppcsect2 | ⊢ ( 𝜑 → ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
| 12 | 11 | cnveqd | ⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ◡ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
| 13 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 14 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 15 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 16 | 1 13 14 15 9 3 5 4 | sectss | ⊢ ( 𝜑 → ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) ) |
| 17 | relxp | ⊢ Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) | |
| 18 | relss | ⊢ ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) | |
| 19 | 16 17 18 | mpisyl | ⊢ ( 𝜑 → Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
| 20 | dfrel2 | ⊢ ( Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ↔ ◡ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → ◡ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
| 22 | 12 21 | eqtrd | ⊢ ( 𝜑 → ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) |
| 23 | 1 2 3 4 5 9 10 | oppcsect2 | ⊢ ( 𝜑 → ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) = ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) |
| 24 | 22 23 | ineq12d | ⊢ ( 𝜑 → ( ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) ) |
| 25 | 8 24 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) ) |
| 26 | 2 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 27 | 2 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 28 | 3 27 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 29 | 26 7 28 4 5 10 | invfval | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) ) |
| 30 | 1 6 3 5 4 9 | invfval | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ◡ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) ) |
| 31 | 25 29 30 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |