This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | endisj.1 | ⊢ 𝐴 ∈ V | |
| endisj.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | endisj | ⊢ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | ⊢ 𝐴 ∈ V | |
| 2 | endisj.2 | ⊢ 𝐵 ∈ V | |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | 1 3 | xpsnen | ⊢ ( 𝐴 × { ∅ } ) ≈ 𝐴 |
| 5 | 1oex | ⊢ 1o ∈ V | |
| 6 | 2 5 | xpsnen | ⊢ ( 𝐵 × { 1o } ) ≈ 𝐵 |
| 7 | 4 6 | pm3.2i | ⊢ ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) |
| 8 | xp01disj | ⊢ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ | |
| 9 | p0ex | ⊢ { ∅ } ∈ V | |
| 10 | 1 9 | xpex | ⊢ ( 𝐴 × { ∅ } ) ∈ V |
| 11 | snex | ⊢ { 1o } ∈ V | |
| 12 | 2 11 | xpex | ⊢ ( 𝐵 × { 1o } ) ∈ V |
| 13 | breq1 | ⊢ ( 𝑥 = ( 𝐴 × { ∅ } ) → ( 𝑥 ≈ 𝐴 ↔ ( 𝐴 × { ∅ } ) ≈ 𝐴 ) ) | |
| 14 | breq1 | ⊢ ( 𝑦 = ( 𝐵 × { 1o } ) → ( 𝑦 ≈ 𝐵 ↔ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ) | |
| 15 | 13 14 | bi2anan9 | ⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ↔ ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ) ) |
| 16 | ineq12 | ⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( 𝑥 ∩ 𝑦 ) = ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( ( 𝑥 = ( 𝐴 × { ∅ } ) ∧ 𝑦 = ( 𝐵 × { 1o } ) ) → ( ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ∧ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) ) ) |
| 19 | 10 12 18 | spc2ev | ⊢ ( ( ( ( 𝐴 × { ∅ } ) ≈ 𝐴 ∧ ( 𝐵 × { 1o } ) ≈ 𝐵 ) ∧ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐵 × { 1o } ) ) = ∅ ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 20 | 7 8 19 | mp2an | ⊢ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) |