This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | endisj.1 | |- A e. _V |
|
| endisj.2 | |- B e. _V |
||
| Assertion | endisj | |- E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | |- A e. _V |
|
| 2 | endisj.2 | |- B e. _V |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 1 3 | xpsnen | |- ( A X. { (/) } ) ~~ A |
| 5 | 1oex | |- 1o e. _V |
|
| 6 | 2 5 | xpsnen | |- ( B X. { 1o } ) ~~ B |
| 7 | 4 6 | pm3.2i | |- ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) |
| 8 | xp01disj | |- ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) |
|
| 9 | p0ex | |- { (/) } e. _V |
|
| 10 | 1 9 | xpex | |- ( A X. { (/) } ) e. _V |
| 11 | snex | |- { 1o } e. _V |
|
| 12 | 2 11 | xpex | |- ( B X. { 1o } ) e. _V |
| 13 | breq1 | |- ( x = ( A X. { (/) } ) -> ( x ~~ A <-> ( A X. { (/) } ) ~~ A ) ) |
|
| 14 | breq1 | |- ( y = ( B X. { 1o } ) -> ( y ~~ B <-> ( B X. { 1o } ) ~~ B ) ) |
|
| 15 | 13 14 | bi2anan9 | |- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( x ~~ A /\ y ~~ B ) <-> ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) ) ) |
| 16 | ineq12 | |- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( x i^i y ) = ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) ) |
|
| 17 | 16 | eqeq1d | |- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( x i^i y ) = (/) <-> ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) ) |
| 18 | 15 17 | anbi12d | |- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) <-> ( ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) /\ ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) ) ) |
| 19 | 10 12 18 | spc2ev | |- ( ( ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) /\ ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) -> E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) ) |
| 20 | 7 8 19 | mp2an | |- E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) |