This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two sets are equinumerous to two disjoint sets. Exercise 4.39 of Mendelson p. 255. (Contributed by NM, 16-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | endisj.1 | ||
| endisj.2 | |||
| Assertion | endisj |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 | ||
| 2 | endisj.2 | ||
| 3 | 0ex | ||
| 4 | 1 3 | xpsnen | |
| 5 | 1oex | ||
| 6 | 2 5 | xpsnen | |
| 7 | 4 6 | pm3.2i | |
| 8 | xp01disj | ||
| 9 | p0ex | ||
| 10 | 1 9 | xpex | |
| 11 | snex | ||
| 12 | 2 11 | xpex | |
| 13 | breq1 | ||
| 14 | breq1 | ||
| 15 | 13 14 | bi2anan9 | |
| 16 | ineq12 | ||
| 17 | 16 | eqeq1d | |
| 18 | 15 17 | anbi12d | |
| 19 | 10 12 18 | spc2ev | |
| 20 | 7 8 19 | mp2an |