This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrfirn | |- ( ( B e. V /\ F : I --> ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn | |- ( F : I --> ~P B -> ran F C_ ~P B ) |
|
| 2 | elrfi | |- ( ( B e. V /\ ran F C_ ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. w e. ( ~P ran F i^i Fin ) A = ( B i^i |^| w ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( B e. V /\ F : I --> ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. w e. ( ~P ran F i^i Fin ) A = ( B i^i |^| w ) ) ) |
| 4 | imassrn | |- ( F " v ) C_ ran F |
|
| 5 | pwexg | |- ( B e. V -> ~P B e. _V ) |
|
| 6 | ssexg | |- ( ( ran F C_ ~P B /\ ~P B e. _V ) -> ran F e. _V ) |
|
| 7 | 1 5 6 | syl2anr | |- ( ( B e. V /\ F : I --> ~P B ) -> ran F e. _V ) |
| 8 | elpw2g | |- ( ran F e. _V -> ( ( F " v ) e. ~P ran F <-> ( F " v ) C_ ran F ) ) |
|
| 9 | 7 8 | syl | |- ( ( B e. V /\ F : I --> ~P B ) -> ( ( F " v ) e. ~P ran F <-> ( F " v ) C_ ran F ) ) |
| 10 | 4 9 | mpbiri | |- ( ( B e. V /\ F : I --> ~P B ) -> ( F " v ) e. ~P ran F ) |
| 11 | 10 | adantr | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( F " v ) e. ~P ran F ) |
| 12 | ffun | |- ( F : I --> ~P B -> Fun F ) |
|
| 13 | 12 | ad2antlr | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> Fun F ) |
| 14 | inss2 | |- ( ~P I i^i Fin ) C_ Fin |
|
| 15 | 14 | sseli | |- ( v e. ( ~P I i^i Fin ) -> v e. Fin ) |
| 16 | 15 | adantl | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> v e. Fin ) |
| 17 | imafi | |- ( ( Fun F /\ v e. Fin ) -> ( F " v ) e. Fin ) |
|
| 18 | 13 16 17 | syl2anc | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( F " v ) e. Fin ) |
| 19 | 11 18 | elind | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( F " v ) e. ( ~P ran F i^i Fin ) ) |
| 20 | ffn | |- ( F : I --> ~P B -> F Fn I ) |
|
| 21 | 20 | ad2antlr | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> F Fn I ) |
| 22 | inss1 | |- ( ~P ran F i^i Fin ) C_ ~P ran F |
|
| 23 | 22 | sseli | |- ( w e. ( ~P ran F i^i Fin ) -> w e. ~P ran F ) |
| 24 | 23 | elpwid | |- ( w e. ( ~P ran F i^i Fin ) -> w C_ ran F ) |
| 25 | 24 | adantl | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> w C_ ran F ) |
| 26 | inss2 | |- ( ~P ran F i^i Fin ) C_ Fin |
|
| 27 | 26 | sseli | |- ( w e. ( ~P ran F i^i Fin ) -> w e. Fin ) |
| 28 | 27 | adantl | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> w e. Fin ) |
| 29 | fipreima | |- ( ( F Fn I /\ w C_ ran F /\ w e. Fin ) -> E. v e. ( ~P I i^i Fin ) ( F " v ) = w ) |
|
| 30 | 21 25 28 29 | syl3anc | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> E. v e. ( ~P I i^i Fin ) ( F " v ) = w ) |
| 31 | eqcom | |- ( ( F " v ) = w <-> w = ( F " v ) ) |
|
| 32 | 31 | rexbii | |- ( E. v e. ( ~P I i^i Fin ) ( F " v ) = w <-> E. v e. ( ~P I i^i Fin ) w = ( F " v ) ) |
| 33 | 30 32 | sylib | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ w e. ( ~P ran F i^i Fin ) ) -> E. v e. ( ~P I i^i Fin ) w = ( F " v ) ) |
| 34 | inteq | |- ( w = ( F " v ) -> |^| w = |^| ( F " v ) ) |
|
| 35 | 34 | ineq2d | |- ( w = ( F " v ) -> ( B i^i |^| w ) = ( B i^i |^| ( F " v ) ) ) |
| 36 | 35 | eqeq2d | |- ( w = ( F " v ) -> ( A = ( B i^i |^| w ) <-> A = ( B i^i |^| ( F " v ) ) ) ) |
| 37 | 36 | adantl | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ w = ( F " v ) ) -> ( A = ( B i^i |^| w ) <-> A = ( B i^i |^| ( F " v ) ) ) ) |
| 38 | 19 33 37 | rexxfrd | |- ( ( B e. V /\ F : I --> ~P B ) -> ( E. w e. ( ~P ran F i^i Fin ) A = ( B i^i |^| w ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^| ( F " v ) ) ) ) |
| 39 | 20 | ad2antlr | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> F Fn I ) |
| 40 | inss1 | |- ( ~P I i^i Fin ) C_ ~P I |
|
| 41 | 40 | sseli | |- ( v e. ( ~P I i^i Fin ) -> v e. ~P I ) |
| 42 | 41 | elpwid | |- ( v e. ( ~P I i^i Fin ) -> v C_ I ) |
| 43 | 42 | adantl | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> v C_ I ) |
| 44 | imaiinfv | |- ( ( F Fn I /\ v C_ I ) -> |^|_ y e. v ( F ` y ) = |^| ( F " v ) ) |
|
| 45 | 39 43 44 | syl2anc | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> |^|_ y e. v ( F ` y ) = |^| ( F " v ) ) |
| 46 | 45 | eqcomd | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> |^| ( F " v ) = |^|_ y e. v ( F ` y ) ) |
| 47 | 46 | ineq2d | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( B i^i |^| ( F " v ) ) = ( B i^i |^|_ y e. v ( F ` y ) ) ) |
| 48 | 47 | eqeq2d | |- ( ( ( B e. V /\ F : I --> ~P B ) /\ v e. ( ~P I i^i Fin ) ) -> ( A = ( B i^i |^| ( F " v ) ) <-> A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |
| 49 | 48 | rexbidva | |- ( ( B e. V /\ F : I --> ~P B ) -> ( E. v e. ( ~P I i^i Fin ) A = ( B i^i |^| ( F " v ) ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |
| 50 | 3 38 49 | 3bitrd | |- ( ( B e. V /\ F : I --> ~P B ) -> ( A e. ( fi ` ( { B } u. ran F ) ) <-> E. v e. ( ~P I i^i Fin ) A = ( B i^i |^|_ y e. v ( F ` y ) ) ) ) |