This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrfirn2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ 𝒫 𝐵 ↔ 𝐶 ⊆ 𝐵 ) ) | |
| 2 | 1 | biimprd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ⊆ 𝐵 → 𝐶 ∈ 𝒫 𝐵 ) ) |
| 3 | 2 | ralimdv | ⊢ ( 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 → ∀ 𝑦 ∈ 𝐼 𝐶 ∈ 𝒫 𝐵 ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝐼 𝐶 ∈ 𝒫 𝐵 ) |
| 5 | eqid | ⊢ ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) | |
| 6 | 5 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝐼 𝐶 ∈ 𝒫 𝐵 ↔ ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) |
| 7 | 4 6 | sylib | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) |
| 8 | elrfirn | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) : 𝐼 ⟶ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ) ) | |
| 9 | 7 8 | syldan | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 10 | inss1 | ⊢ ( 𝒫 𝐼 ∩ Fin ) ⊆ 𝒫 𝐼 | |
| 11 | 10 | sseli | ⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐼 ) |
| 12 | 11 | elpwid | ⊢ ( 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) → 𝑣 ⊆ 𝐼 ) |
| 13 | nffvmpt1 | ⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) | |
| 14 | nfcv | ⊢ Ⅎ 𝑧 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) | |
| 15 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) = ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) ) | |
| 16 | 13 14 15 | cbviin | ⊢ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) = ∩ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) |
| 17 | simplr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝑦 ∈ 𝐼 ) | |
| 18 | simpll | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐵 ∈ 𝑉 ) | |
| 19 | simpr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ⊆ 𝐵 ) | |
| 20 | 18 19 | ssexd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → 𝐶 ∈ V ) |
| 21 | 5 | fvmpt2 | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝐶 ∈ V ) → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
| 22 | 17 20 21 | syl2anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
| 23 | 22 | ex | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐶 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) ) |
| 24 | 23 | ralimdva | ⊢ ( 𝐵 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 → ∀ 𝑦 ∈ 𝐼 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ∀ 𝑦 ∈ 𝐼 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
| 26 | ssralv | ⊢ ( 𝑣 ⊆ 𝐼 → ( ∀ 𝑦 ∈ 𝐼 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 → ∀ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) ) | |
| 27 | 25 26 | mpan9 | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ∀ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 ) |
| 28 | iineq2 | ⊢ ( ∀ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐶 → ∩ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = ∩ 𝑦 ∈ 𝑣 𝐶 ) | |
| 29 | 27 28 | syl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ∩ 𝑦 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑦 ) = ∩ 𝑦 ∈ 𝑣 𝐶 ) |
| 30 | 16 29 | eqtrid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) = ∩ 𝑦 ∈ 𝑣 𝐶 ) |
| 31 | 30 | ineq2d | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) |
| 32 | 31 | eqeq2d | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ⊆ 𝐼 ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
| 33 | 12 32 | sylan2 | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) ∧ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
| 34 | 33 | rexbidva | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑧 ∈ 𝑣 ( ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ‘ 𝑧 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |
| 35 | 9 34 | bitrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ ran ( 𝑦 ∈ 𝐼 ↦ 𝐶 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐼 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶 ) ) ) |