This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation defined by the maps-to notation with a function into a class abstraction as a result having an element. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpt3rab1.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
| ovmpt3rab1.m | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) | ||
| ovmpt3rab1.n | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) | ||
| Assertion | elovmpt3rab1 | ⊢ ( ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt3rab1.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
| 2 | ovmpt3rab1.m | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) | |
| 3 | ovmpt3rab1.n | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) | |
| 4 | 1 | elovmpt3imp | ⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 5 | simprl | ⊢ ( ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) | |
| 6 | elfvdm | ⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ) | |
| 7 | simpl | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑋 ∈ V ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → 𝑋 ∈ V ) |
| 9 | simplr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → 𝑌 ∈ V ) | |
| 10 | simprl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → 𝐾 ∈ 𝑈 ) | |
| 11 | simprr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → 𝐿 ∈ 𝑇 ) | |
| 12 | 1 2 3 | ovmpt3rabdm | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑋 𝑂 𝑌 ) = 𝐾 ) |
| 13 | 8 9 10 11 12 | syl31anc | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → dom ( 𝑋 𝑂 𝑌 ) = 𝐾 ) |
| 14 | 13 | eleq2d | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ↔ 𝑍 ∈ 𝐾 ) ) |
| 15 | 14 | biimpcd | ⊢ ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → 𝑍 ∈ 𝐾 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → 𝑍 ∈ 𝐾 ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → 𝑍 ∈ 𝐾 ) |
| 18 | simpl | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → 𝑍 ∈ 𝐾 ) | |
| 19 | simplr | ⊢ ( ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) |
| 21 | simpl | ⊢ ( ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) → 𝐾 ∈ 𝑈 ) | |
| 22 | 21 | anim2i | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝐾 ∈ 𝑈 ) ) |
| 23 | df-3an | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝐾 ∈ 𝑈 ) ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝐾 ∈ 𝑈 ) ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝐾 ∈ 𝑈 ) ) |
| 25 | 24 | ad2antll | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝐾 ∈ 𝑈 ) ) |
| 26 | sbceq1a | ⊢ ( 𝑦 = 𝑌 → ( 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 27 | sbceq1a | ⊢ ( 𝑥 = 𝑋 → ( [ 𝑌 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 28 | 26 27 | sylan9bbr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
| 29 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 | |
| 30 | nfcv | ⊢ Ⅎ 𝑦 𝑋 | |
| 31 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑌 / 𝑦 ] 𝜑 | |
| 32 | 30 31 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
| 33 | 1 2 3 28 29 32 | ovmpt3rab1 | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝐾 ∈ 𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
| 34 | 33 | fveq1d | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝐾 ∈ 𝑈 ) → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ( ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ‘ 𝑍 ) ) |
| 35 | 25 34 | syl | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) = ( ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ‘ 𝑍 ) ) |
| 36 | rabexg | ⊢ ( 𝐿 ∈ 𝑇 → { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) → { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
| 38 | 37 | ad2antll | ⊢ ( ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
| 39 | nfcv | ⊢ Ⅎ 𝑧 𝑍 | |
| 40 | nfsbc1v | ⊢ Ⅎ 𝑧 [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 | |
| 41 | nfcv | ⊢ Ⅎ 𝑧 𝐿 | |
| 42 | 40 41 | nfrabw | ⊢ Ⅎ 𝑧 { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } |
| 43 | sbceq1a | ⊢ ( 𝑧 = 𝑍 → ( [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ↔ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 44 | 43 | rabbidv | ⊢ ( 𝑧 = 𝑍 → { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } = { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
| 45 | eqid | ⊢ ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) | |
| 46 | 39 42 44 45 | fvmptf | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) → ( ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ‘ 𝑍 ) = { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
| 47 | 38 46 | sylan2 | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → ( ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ‘ 𝑍 ) = { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
| 48 | 35 47 | eqtr2d | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } = ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) |
| 49 | 20 48 | eleqtrrd | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → 𝐴 ∈ { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
| 50 | elrabi | ⊢ ( 𝐴 ∈ { 𝑎 ∈ 𝐿 ∣ [ 𝑍 / 𝑧 ] [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } → 𝐴 ∈ 𝐿 ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → 𝐴 ∈ 𝐿 ) |
| 52 | 18 51 | jca | ⊢ ( ( 𝑍 ∈ 𝐾 ∧ ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) ) → ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) |
| 53 | 17 52 | mpancom | ⊢ ( ( ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) ∧ 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) |
| 54 | 53 | exp31 | ⊢ ( 𝑍 ∈ dom ( 𝑋 𝑂 𝑌 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) ) |
| 55 | 6 54 | mpcom | ⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) → ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) |
| 56 | 55 | imp | ⊢ ( ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) |
| 57 | 5 56 | jca | ⊢ ( ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) ∧ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) ) ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) |
| 58 | 57 | exp32 | ⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) ) ) |
| 59 | 4 58 | mpd | ⊢ ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) ) |
| 60 | 59 | com12 | ⊢ ( ( 𝐾 ∈ 𝑈 ∧ 𝐿 ∈ 𝑇 ) → ( 𝐴 ∈ ( ( 𝑋 𝑂 𝑌 ) ‘ 𝑍 ) → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑍 ∈ 𝐾 ∧ 𝐴 ∈ 𝐿 ) ) ) ) |