This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpt3rab1.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
| ovmpt3rab1.m | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) | ||
| ovmpt3rab1.n | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) | ||
| Assertion | ovmpt3rabdm | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑋 𝑂 𝑌 ) = 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt3rab1.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
| 2 | ovmpt3rab1.m | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) | |
| 3 | ovmpt3rab1.n | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) | |
| 4 | sbceq1a | ⊢ ( 𝑦 = 𝑌 → ( 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 5 | sbceq1a | ⊢ ( 𝑥 = 𝑋 → ( [ 𝑌 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 6 | 4 5 | sylan9bbr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
| 7 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 𝑋 | |
| 9 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑌 / 𝑦 ] 𝜑 | |
| 10 | 8 9 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
| 11 | 1 2 3 6 7 10 | ovmpt3rab1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
| 13 | 12 | dmeqd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑋 𝑂 𝑌 ) = dom ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
| 14 | rabexg | ⊢ ( 𝐿 ∈ 𝑇 → { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
| 16 | 15 | ralrimivw | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → ∀ 𝑧 ∈ 𝐾 { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
| 17 | dmmptg | ⊢ ( ∀ 𝑧 ∈ 𝐾 { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V → dom ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) = 𝐾 ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) = 𝐾 ) |
| 19 | 13 18 | eqtrd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑋 𝑂 𝑌 ) = 𝐾 ) |