This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpt3rab1.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
| ovmpt3rab1.m | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) | ||
| ovmpt3rab1.n | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) | ||
| ovmpt3rab1.p | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| ovmpt3rab1.x | ⊢ Ⅎ 𝑥 𝜓 | ||
| ovmpt3rab1.y | ⊢ Ⅎ 𝑦 𝜓 | ||
| Assertion | ovmpt3rab1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt3rab1.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) | |
| 2 | ovmpt3rab1.m | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) | |
| 3 | ovmpt3rab1.n | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) | |
| 4 | ovmpt3rab1.p | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | ovmpt3rab1.x | ⊢ Ⅎ 𝑥 𝜓 | |
| 6 | ovmpt3rab1.y | ⊢ Ⅎ 𝑦 𝜓 | |
| 7 | 1 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) ) |
| 8 | 3 4 | rabeqbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑎 ∈ 𝑁 ∣ 𝜑 } = { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) |
| 9 | 2 8 | mpteq12dv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |
| 11 | eqidd | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝑥 = 𝑋 ) → V = V ) | |
| 12 | elex | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → 𝑋 ∈ V ) |
| 14 | elex | ⊢ ( 𝑌 ∈ 𝑊 → 𝑌 ∈ V ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → 𝑌 ∈ V ) |
| 16 | mptexg | ⊢ ( 𝐾 ∈ 𝑈 → ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ∈ V ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ∈ V ) |
| 18 | nfv | ⊢ Ⅎ 𝑥 ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) | |
| 19 | nfv | ⊢ Ⅎ 𝑦 ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) | |
| 20 | nfcv | ⊢ Ⅎ 𝑦 𝑋 | |
| 21 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 22 | nfcv | ⊢ Ⅎ 𝑥 𝐾 | |
| 23 | nfcv | ⊢ Ⅎ 𝑥 𝐿 | |
| 24 | 5 23 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑎 ∈ 𝐿 ∣ 𝜓 } |
| 25 | 22 24 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) |
| 26 | nfcv | ⊢ Ⅎ 𝑦 𝐾 | |
| 27 | nfcv | ⊢ Ⅎ 𝑦 𝐿 | |
| 28 | 6 27 | nfrabw | ⊢ Ⅎ 𝑦 { 𝑎 ∈ 𝐿 ∣ 𝜓 } |
| 29 | 26 28 | nfmpt | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) |
| 30 | 7 10 11 13 15 17 18 19 20 21 25 29 | ovmpodxf | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |