This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzodifsumelfzo | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... 𝑃 ) ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) | |
| 2 | elfz2nn0 | ⊢ ( 𝑁 ∈ ( 0 ... 𝑃 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) | |
| 3 | elfzo0 | ⊢ ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝐼 < ( 𝑁 − 𝑀 ) ) ) | |
| 4 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 5 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 6 | znnsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| 8 | simpr | ⊢ ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℕ0 ) | |
| 9 | simpll | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℕ0 ) | |
| 10 | nn0addcl | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) | |
| 11 | 8 9 10 | syl2anr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
| 12 | 11 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
| 13 | 0red | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 14 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 16 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 18 | 13 15 17 | 3jca | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 20 | nn0ge0 | ⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑀 ) |
| 22 | 21 | anim1i | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) |
| 23 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) → 0 < 𝑁 ) ) | |
| 24 | 19 22 23 | sylc | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 0 < 𝑁 ) |
| 25 | 24 | ex | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → 0 < 𝑁 ) ) |
| 26 | 0red | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 27 | 16 | adantl | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 28 | nn0re | ⊢ ( 𝑃 ∈ ℕ0 → 𝑃 ∈ ℝ ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 30 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 0 < 𝑃 ) ) | |
| 31 | 26 27 29 30 | syl3anc | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 0 < 𝑃 ) ) |
| 32 | nn0z | ⊢ ( 𝑃 ∈ ℕ0 → 𝑃 ∈ ℤ ) | |
| 33 | elnnz | ⊢ ( 𝑃 ∈ ℕ ↔ ( 𝑃 ∈ ℤ ∧ 0 < 𝑃 ) ) | |
| 34 | 33 | simplbi2 | ⊢ ( 𝑃 ∈ ℤ → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
| 35 | 32 34 | syl | ⊢ ( 𝑃 ∈ ℕ0 → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
| 37 | 31 36 | syld | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
| 38 | 37 | exp4b | ⊢ ( 𝑃 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → ( 𝑁 ≤ 𝑃 → 𝑃 ∈ ℕ ) ) ) ) |
| 39 | 38 | com24 | ⊢ ( 𝑃 ∈ ℕ0 → ( 𝑁 ≤ 𝑃 → ( 0 < 𝑁 → ( 𝑁 ∈ ℕ0 → 𝑃 ∈ ℕ ) ) ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 0 < 𝑁 → ( 𝑁 ∈ ℕ0 → 𝑃 ∈ ℕ ) ) ) |
| 41 | 40 | com13 | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
| 43 | 25 42 | syld | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
| 46 | 45 | imp | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 47 | nn0re | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
| 49 | 15 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℝ ) |
| 50 | readdcl | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) | |
| 51 | 48 49 50 | syl2anr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
| 52 | 51 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
| 53 | 17 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → 𝑁 ∈ ℝ ) |
| 55 | 54 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 56 | 28 | adantl | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 57 | 52 55 56 | 3jca | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) ) |
| 59 | 47 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
| 60 | 15 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 61 | 17 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 62 | 59 60 61 | ltaddsubd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐼 + 𝑀 ) < 𝑁 ↔ 𝐼 < ( 𝑁 − 𝑀 ) ) ) |
| 63 | 62 | exbiri | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐼 ∈ ℕ0 → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) ) |
| 64 | 63 | impcomd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) |
| 66 | 65 | imp | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) < 𝑁 ) |
| 67 | 66 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) |
| 68 | 67 | anim1i | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝐼 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ 𝑃 ) ) |
| 69 | ltletr | ⊢ ( ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( ( 𝐼 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) < 𝑃 ) ) | |
| 70 | 58 68 69 | sylc | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) < 𝑃 ) |
| 71 | 70 | anasss | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) < 𝑃 ) |
| 72 | elfzo0 | ⊢ ( ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ↔ ( ( 𝐼 + 𝑀 ) ∈ ℕ0 ∧ 𝑃 ∈ ℕ ∧ ( 𝐼 + 𝑀 ) < 𝑃 ) ) | |
| 73 | 12 46 71 72 | syl3anbrc | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) |
| 74 | 73 | exp53 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 75 | 7 74 | sylbird | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 76 | 75 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 77 | 76 | com14 | ⊢ ( 𝐼 ∈ ℕ0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
| 78 | 77 | 3imp | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝐼 < ( 𝑁 − 𝑀 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 79 | 3 78 | sylbi | ⊢ ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 80 | 79 | com13 | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 81 | 80 | 3adant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 82 | 2 81 | sylbi | ⊢ ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 83 | 82 | com12 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 84 | 1 83 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
| 85 | 84 | imp | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... 𝑃 ) ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) |