This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzodifsumelfzo | |- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... P ) ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | |- ( M e. ( 0 ... N ) <-> ( M e. NN0 /\ N e. NN0 /\ M <_ N ) ) |
|
| 2 | elfz2nn0 | |- ( N e. ( 0 ... P ) <-> ( N e. NN0 /\ P e. NN0 /\ N <_ P ) ) |
|
| 3 | elfzo0 | |- ( I e. ( 0 ..^ ( N - M ) ) <-> ( I e. NN0 /\ ( N - M ) e. NN /\ I < ( N - M ) ) ) |
|
| 4 | nn0z | |- ( M e. NN0 -> M e. ZZ ) |
|
| 5 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 6 | znnsub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( N - M ) e. NN ) ) |
| 8 | simpr | |- ( ( I < ( N - M ) /\ I e. NN0 ) -> I e. NN0 ) |
|
| 9 | simpll | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> M e. NN0 ) |
|
| 10 | nn0addcl | |- ( ( I e. NN0 /\ M e. NN0 ) -> ( I + M ) e. NN0 ) |
|
| 11 | 8 9 10 | syl2anr | |- ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) -> ( I + M ) e. NN0 ) |
| 12 | 11 | adantr | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ ( P e. NN0 /\ N <_ P ) ) -> ( I + M ) e. NN0 ) |
| 13 | 0red | |- ( ( M e. NN0 /\ N e. NN0 ) -> 0 e. RR ) |
|
| 14 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 15 | 14 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> M e. RR ) |
| 16 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 17 | 16 | adantl | |- ( ( M e. NN0 /\ N e. NN0 ) -> N e. RR ) |
| 18 | 13 15 17 | 3jca | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 e. RR /\ M e. RR /\ N e. RR ) ) |
| 19 | 18 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> ( 0 e. RR /\ M e. RR /\ N e. RR ) ) |
| 20 | nn0ge0 | |- ( M e. NN0 -> 0 <_ M ) |
|
| 21 | 20 | adantr | |- ( ( M e. NN0 /\ N e. NN0 ) -> 0 <_ M ) |
| 22 | 21 | anim1i | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> ( 0 <_ M /\ M < N ) ) |
| 23 | lelttr | |- ( ( 0 e. RR /\ M e. RR /\ N e. RR ) -> ( ( 0 <_ M /\ M < N ) -> 0 < N ) ) |
|
| 24 | 19 22 23 | sylc | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> 0 < N ) |
| 25 | 24 | ex | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N -> 0 < N ) ) |
| 26 | 0red | |- ( ( P e. NN0 /\ N e. NN0 ) -> 0 e. RR ) |
|
| 27 | 16 | adantl | |- ( ( P e. NN0 /\ N e. NN0 ) -> N e. RR ) |
| 28 | nn0re | |- ( P e. NN0 -> P e. RR ) |
|
| 29 | 28 | adantr | |- ( ( P e. NN0 /\ N e. NN0 ) -> P e. RR ) |
| 30 | ltletr | |- ( ( 0 e. RR /\ N e. RR /\ P e. RR ) -> ( ( 0 < N /\ N <_ P ) -> 0 < P ) ) |
|
| 31 | 26 27 29 30 | syl3anc | |- ( ( P e. NN0 /\ N e. NN0 ) -> ( ( 0 < N /\ N <_ P ) -> 0 < P ) ) |
| 32 | nn0z | |- ( P e. NN0 -> P e. ZZ ) |
|
| 33 | elnnz | |- ( P e. NN <-> ( P e. ZZ /\ 0 < P ) ) |
|
| 34 | 33 | simplbi2 | |- ( P e. ZZ -> ( 0 < P -> P e. NN ) ) |
| 35 | 32 34 | syl | |- ( P e. NN0 -> ( 0 < P -> P e. NN ) ) |
| 36 | 35 | adantr | |- ( ( P e. NN0 /\ N e. NN0 ) -> ( 0 < P -> P e. NN ) ) |
| 37 | 31 36 | syld | |- ( ( P e. NN0 /\ N e. NN0 ) -> ( ( 0 < N /\ N <_ P ) -> P e. NN ) ) |
| 38 | 37 | exp4b | |- ( P e. NN0 -> ( N e. NN0 -> ( 0 < N -> ( N <_ P -> P e. NN ) ) ) ) |
| 39 | 38 | com24 | |- ( P e. NN0 -> ( N <_ P -> ( 0 < N -> ( N e. NN0 -> P e. NN ) ) ) ) |
| 40 | 39 | imp | |- ( ( P e. NN0 /\ N <_ P ) -> ( 0 < N -> ( N e. NN0 -> P e. NN ) ) ) |
| 41 | 40 | com13 | |- ( N e. NN0 -> ( 0 < N -> ( ( P e. NN0 /\ N <_ P ) -> P e. NN ) ) ) |
| 42 | 41 | adantl | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < N -> ( ( P e. NN0 /\ N <_ P ) -> P e. NN ) ) ) |
| 43 | 25 42 | syld | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N -> ( ( P e. NN0 /\ N <_ P ) -> P e. NN ) ) ) |
| 44 | 43 | imp | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> ( ( P e. NN0 /\ N <_ P ) -> P e. NN ) ) |
| 45 | 44 | adantr | |- ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) -> ( ( P e. NN0 /\ N <_ P ) -> P e. NN ) ) |
| 46 | 45 | imp | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ ( P e. NN0 /\ N <_ P ) ) -> P e. NN ) |
| 47 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 48 | 47 | adantl | |- ( ( I < ( N - M ) /\ I e. NN0 ) -> I e. RR ) |
| 49 | 15 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> M e. RR ) |
| 50 | readdcl | |- ( ( I e. RR /\ M e. RR ) -> ( I + M ) e. RR ) |
|
| 51 | 48 49 50 | syl2anr | |- ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) -> ( I + M ) e. RR ) |
| 52 | 51 | adantr | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) -> ( I + M ) e. RR ) |
| 53 | 17 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> N e. RR ) |
| 54 | 53 | adantr | |- ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) -> N e. RR ) |
| 55 | 54 | adantr | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) -> N e. RR ) |
| 56 | 28 | adantl | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) -> P e. RR ) |
| 57 | 52 55 56 | 3jca | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) -> ( ( I + M ) e. RR /\ N e. RR /\ P e. RR ) ) |
| 58 | 57 | adantr | |- ( ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) /\ N <_ P ) -> ( ( I + M ) e. RR /\ N e. RR /\ P e. RR ) ) |
| 59 | 47 | adantl | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ I e. NN0 ) -> I e. RR ) |
| 60 | 15 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ I e. NN0 ) -> M e. RR ) |
| 61 | 17 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ I e. NN0 ) -> N e. RR ) |
| 62 | 59 60 61 | ltaddsubd | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ I e. NN0 ) -> ( ( I + M ) < N <-> I < ( N - M ) ) ) |
| 63 | 62 | exbiri | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( I e. NN0 -> ( I < ( N - M ) -> ( I + M ) < N ) ) ) |
| 64 | 63 | impcomd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( I < ( N - M ) /\ I e. NN0 ) -> ( I + M ) < N ) ) |
| 65 | 64 | adantr | |- ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) -> ( ( I < ( N - M ) /\ I e. NN0 ) -> ( I + M ) < N ) ) |
| 66 | 65 | imp | |- ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) -> ( I + M ) < N ) |
| 67 | 66 | adantr | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) -> ( I + M ) < N ) |
| 68 | 67 | anim1i | |- ( ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) /\ N <_ P ) -> ( ( I + M ) < N /\ N <_ P ) ) |
| 69 | ltletr | |- ( ( ( I + M ) e. RR /\ N e. RR /\ P e. RR ) -> ( ( ( I + M ) < N /\ N <_ P ) -> ( I + M ) < P ) ) |
|
| 70 | 58 68 69 | sylc | |- ( ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ P e. NN0 ) /\ N <_ P ) -> ( I + M ) < P ) |
| 71 | 70 | anasss | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ ( P e. NN0 /\ N <_ P ) ) -> ( I + M ) < P ) |
| 72 | elfzo0 | |- ( ( I + M ) e. ( 0 ..^ P ) <-> ( ( I + M ) e. NN0 /\ P e. NN /\ ( I + M ) < P ) ) |
|
| 73 | 12 46 71 72 | syl3anbrc | |- ( ( ( ( ( M e. NN0 /\ N e. NN0 ) /\ M < N ) /\ ( I < ( N - M ) /\ I e. NN0 ) ) /\ ( P e. NN0 /\ N <_ P ) ) -> ( I + M ) e. ( 0 ..^ P ) ) |
| 74 | 73 | exp53 | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N -> ( I < ( N - M ) -> ( I e. NN0 -> ( ( P e. NN0 /\ N <_ P ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) ) ) |
| 75 | 7 74 | sylbird | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N - M ) e. NN -> ( I < ( N - M ) -> ( I e. NN0 -> ( ( P e. NN0 /\ N <_ P ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) ) ) |
| 76 | 75 | 3adant3 | |- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( ( N - M ) e. NN -> ( I < ( N - M ) -> ( I e. NN0 -> ( ( P e. NN0 /\ N <_ P ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) ) ) |
| 77 | 76 | com14 | |- ( I e. NN0 -> ( ( N - M ) e. NN -> ( I < ( N - M ) -> ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( ( P e. NN0 /\ N <_ P ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) ) ) |
| 78 | 77 | 3imp | |- ( ( I e. NN0 /\ ( N - M ) e. NN /\ I < ( N - M ) ) -> ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( ( P e. NN0 /\ N <_ P ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 79 | 3 78 | sylbi | |- ( I e. ( 0 ..^ ( N - M ) ) -> ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( ( P e. NN0 /\ N <_ P ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 80 | 79 | com13 | |- ( ( P e. NN0 /\ N <_ P ) -> ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 81 | 80 | 3adant1 | |- ( ( N e. NN0 /\ P e. NN0 /\ N <_ P ) -> ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 82 | 2 81 | sylbi | |- ( N e. ( 0 ... P ) -> ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 83 | 82 | com12 | |- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( N e. ( 0 ... P ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 84 | 1 83 | sylbi | |- ( M e. ( 0 ... N ) -> ( N e. ( 0 ... P ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) ) |
| 85 | 84 | imp | |- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... P ) ) -> ( I e. ( 0 ..^ ( N - M ) ) -> ( I + M ) e. ( 0 ..^ P ) ) ) |