This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo0z | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) | |
| 2 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 3 | 2 | 3anim2i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ0 ) | |
| 5 | elnn0z | ⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) | |
| 6 | 0red | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 0 ∈ ℝ ) | |
| 7 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 9 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 11 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) ) | |
| 12 | 6 8 10 11 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 0 < 𝐵 ) ) |
| 13 | elnnz | ⊢ ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) ) | |
| 14 | 13 | simplbi2 | ⊢ ( 𝐵 ∈ ℤ → ( 0 < 𝐵 → 𝐵 ∈ ℕ ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 < 𝐵 → 𝐵 ∈ ℕ ) ) |
| 16 | 12 15 | syld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℕ ) ) |
| 17 | 16 | expd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ≤ 𝐴 → ( 𝐴 < 𝐵 → 𝐵 ∈ ℕ ) ) ) |
| 18 | 17 | impancom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( 𝐵 ∈ ℤ → ( 𝐴 < 𝐵 → 𝐵 ∈ ℕ ) ) ) |
| 19 | 5 18 | sylbi | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 ∈ ℤ → ( 𝐴 < 𝐵 → 𝐵 ∈ ℕ ) ) ) |
| 20 | 19 | 3imp | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℕ ) |
| 21 | simp3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 22 | 4 20 21 | 3jca | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |
| 23 | 3 22 | impbii | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |
| 24 | 1 23 | bitri | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |