This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0p1elfzo | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ltp1le | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 < 𝑁 ↔ ( 𝐾 + 1 ) ≤ 𝑁 ) ) | |
| 2 | 1 | biimp3ar | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) → 𝐾 < 𝑁 ) |
| 3 | simpl1 | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) ∧ 𝐾 < 𝑁 ) → 𝐾 ∈ ℕ0 ) | |
| 4 | simpr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐾 < 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 6 | nn0ge0 | ⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝐾 ) |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 10 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 11 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) → 0 < 𝑁 ) ) | |
| 12 | 8 9 10 11 | mp3an3an | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) → 0 < 𝑁 ) ) |
| 13 | 7 12 | mpand | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 < 𝑁 → 0 < 𝑁 ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐾 < 𝑁 ) → 0 < 𝑁 ) |
| 15 | elnnnn0b | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) | |
| 16 | 5 14 15 | sylanbrc | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐾 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 17 | 16 | 3adantl3 | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) ∧ 𝐾 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 18 | simpr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) ∧ 𝐾 < 𝑁 ) → 𝐾 < 𝑁 ) | |
| 19 | 3 17 18 | 3jca | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) ∧ 𝐾 < 𝑁 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 20 | 2 19 | mpdan | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 21 | elfzo0 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |