This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo0z | |- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
|
| 2 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 3 | 2 | 3anim2i | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) -> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |
| 4 | simp1 | |- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> A e. NN0 ) |
|
| 5 | elnn0z | |- ( A e. NN0 <-> ( A e. ZZ /\ 0 <_ A ) ) |
|
| 6 | 0red | |- ( ( A e. ZZ /\ B e. ZZ ) -> 0 e. RR ) |
|
| 7 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 8 | 7 | adantr | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. RR ) |
| 9 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 10 | 9 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. RR ) |
| 11 | lelttr | |- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
|
| 12 | 6 8 10 11 | syl3anc | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
| 13 | elnnz | |- ( B e. NN <-> ( B e. ZZ /\ 0 < B ) ) |
|
| 14 | 13 | simplbi2 | |- ( B e. ZZ -> ( 0 < B -> B e. NN ) ) |
| 15 | 14 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 < B -> B e. NN ) ) |
| 16 | 12 15 | syld | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 0 <_ A /\ A < B ) -> B e. NN ) ) |
| 17 | 16 | expd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 <_ A -> ( A < B -> B e. NN ) ) ) |
| 18 | 17 | impancom | |- ( ( A e. ZZ /\ 0 <_ A ) -> ( B e. ZZ -> ( A < B -> B e. NN ) ) ) |
| 19 | 5 18 | sylbi | |- ( A e. NN0 -> ( B e. ZZ -> ( A < B -> B e. NN ) ) ) |
| 20 | 19 | 3imp | |- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> B e. NN ) |
| 21 | simp3 | |- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> A < B ) |
|
| 22 | 4 20 21 | 3jca | |- ( ( A e. NN0 /\ B e. ZZ /\ A < B ) -> ( A e. NN0 /\ B e. NN /\ A < B ) ) |
| 23 | 3 22 | impbii | |- ( ( A e. NN0 /\ B e. NN /\ A < B ) <-> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |
| 24 | 1 23 | bitri | |- ( A e. ( 0 ..^ B ) <-> ( A e. NN0 /\ B e. ZZ /\ A < B ) ) |