This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018) (Revised by Thierry Arnoux, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfznelfzob | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznelfzo | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) | |
| 2 | 1 | ex | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 3 | elfzole1 | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 1 ≤ 𝑀 ) | |
| 4 | elfzolt2 | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 𝑀 < 𝐾 ) | |
| 5 | elfzoel2 | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 𝐾 ∈ ℤ ) | |
| 6 | elfzoelz | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 𝑀 ∈ ℤ ) | |
| 7 | 0lt1 | ⊢ 0 < 1 | |
| 8 | breq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 < 1 ↔ 0 < 1 ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( 𝑀 = 0 → 𝑀 < 1 ) |
| 10 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 12 | 1red | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → 1 ∈ ℝ ) | |
| 13 | 11 12 | ltnled | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < 1 ↔ ¬ 1 ≤ 𝑀 ) ) |
| 14 | 9 13 | imbitrid | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 𝑀 = 0 → ¬ 1 ≤ 𝑀 ) ) |
| 15 | 14 | con2d | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 1 ≤ 𝑀 → ¬ 𝑀 = 0 ) ) |
| 16 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 17 | ltlen | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀 ) ) ) | |
| 18 | 10 16 17 | syl2anr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀 ) ) ) |
| 19 | necom | ⊢ ( 𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾 ) | |
| 20 | df-ne | ⊢ ( 𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾 ) | |
| 21 | 19 20 | sylbb | ⊢ ( 𝐾 ≠ 𝑀 → ¬ 𝑀 = 𝐾 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀 ) → ¬ 𝑀 = 𝐾 ) |
| 23 | 18 22 | biimtrdi | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < 𝐾 → ¬ 𝑀 = 𝐾 ) ) |
| 24 | 23 | ex | ⊢ ( 𝐾 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 < 𝐾 → ¬ 𝑀 = 𝐾 ) ) ) |
| 25 | 24 | com23 | ⊢ ( 𝐾 ∈ ℤ → ( 𝑀 < 𝐾 → ( 𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾 ) ) ) |
| 26 | 25 | impcom | ⊢ ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾 ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ¬ 𝑀 = 𝐾 ) |
| 28 | 15 27 | jctird | ⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 1 ≤ 𝑀 → ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) ) |
| 29 | 4 5 6 28 | syl21anc | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 1 ≤ 𝑀 → ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) ) |
| 30 | 3 29 | mpd | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) |
| 31 | ioran | ⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
| 33 | 32 | a1i | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 34 | 33 | con2d | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) ) |
| 35 | 2 34 | impbid | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |