This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker elfvmptrab1w when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfvmptrab1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| elfvmptrab1.v | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) | ||
| Assertion | elfvmptrab1 | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| 2 | elfvmptrab1.v | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) | |
| 3 | ne0i | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) | |
| 4 | ndmfv | ⊢ ( ¬ 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = ∅ ) | |
| 5 | 4 | necon1ai | ⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ dom 𝐹 ) |
| 6 | 1 | dmmptss | ⊢ dom 𝐹 ⊆ 𝑉 |
| 7 | 6 | sseli | ⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉 ) |
| 8 | rabexg | ⊢ ( ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) | |
| 9 | 7 2 8 | 3syl | ⊢ ( 𝑋 ∈ dom 𝐹 → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 11 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] 𝜑 | |
| 12 | nfcv | ⊢ Ⅎ 𝑥 𝑀 | |
| 13 | 10 12 | nfcsb | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑚 ⦌ 𝑀 |
| 14 | 11 13 | nfrab | ⊢ Ⅎ 𝑥 { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } |
| 15 | csbeq1 | ⊢ ( 𝑥 = 𝑋 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) | |
| 16 | sbceq1a | ⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] 𝜑 ) ) | |
| 17 | 15 16 | rabeqbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
| 18 | 10 14 17 1 | fvmptf | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
| 19 | 7 9 18 | syl2anc | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
| 20 | 19 | eleq2d | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) ) |
| 21 | elrabi | ⊢ ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) | |
| 22 | 7 21 | anim12i | ⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
| 23 | 22 | ex | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 24 | 20 23 | sylbid | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 25 | 3 5 24 | 3syl | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 26 | 25 | pm2.43i | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |