This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfvmptrab.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) | |
| elfvmptrab.v | ⊢ ( 𝑋 ∈ 𝑉 → 𝑀 ∈ V ) | ||
| Assertion | elfvmptrab | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) | |
| 2 | elfvmptrab.v | ⊢ ( 𝑋 ∈ 𝑉 → 𝑀 ∈ V ) | |
| 3 | csbconstg | ⊢ ( 𝑥 ∈ 𝑉 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = 𝑀 ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝑥 ∈ 𝑉 → 𝑀 = ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ) |
| 5 | rabeq | ⊢ ( 𝑀 = ⦋ 𝑥 / 𝑚 ⦌ 𝑀 → { 𝑦 ∈ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑥 ∈ 𝑉 → { 𝑦 ∈ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
| 7 | 6 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ 𝑀 ∣ 𝜑 } ) = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
| 8 | 1 7 | eqtri | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) |
| 9 | csbconstg | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 = 𝑀 ) | |
| 10 | 9 2 | eqeltrd | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) |
| 11 | 8 10 | elfvmptrab1w | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
| 12 | 9 | eleq2d | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ↔ 𝑌 ∈ 𝑀 ) ) |
| 13 | 12 | biimpd | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 → 𝑌 ∈ 𝑀 ) ) |
| 14 | 13 | imdistani | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀 ) ) |
| 15 | 11 14 | syl | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑀 ) ) |