This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker elfvmptrab1w when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfvmptrab1.f | |- F = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) |
|
| elfvmptrab1.v | |- ( X e. V -> [_ X / m ]_ M e. _V ) |
||
| Assertion | elfvmptrab1 | |- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab1.f | |- F = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) |
|
| 2 | elfvmptrab1.v | |- ( X e. V -> [_ X / m ]_ M e. _V ) |
|
| 3 | ne0i | |- ( Y e. ( F ` X ) -> ( F ` X ) =/= (/) ) |
|
| 4 | ndmfv | |- ( -. X e. dom F -> ( F ` X ) = (/) ) |
|
| 5 | 4 | necon1ai | |- ( ( F ` X ) =/= (/) -> X e. dom F ) |
| 6 | 1 | dmmptss | |- dom F C_ V |
| 7 | 6 | sseli | |- ( X e. dom F -> X e. V ) |
| 8 | rabexg | |- ( [_ X / m ]_ M e. _V -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) |
|
| 9 | 7 2 8 | 3syl | |- ( X e. dom F -> { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) |
| 10 | nfcv | |- F/_ x X |
|
| 11 | nfsbc1v | |- F/ x [. X / x ]. ph |
|
| 12 | nfcv | |- F/_ x M |
|
| 13 | 10 12 | nfcsb | |- F/_ x [_ X / m ]_ M |
| 14 | 11 13 | nfrab | |- F/_ x { y e. [_ X / m ]_ M | [. X / x ]. ph } |
| 15 | csbeq1 | |- ( x = X -> [_ x / m ]_ M = [_ X / m ]_ M ) |
|
| 16 | sbceq1a | |- ( x = X -> ( ph <-> [. X / x ]. ph ) ) |
|
| 17 | 15 16 | rabeqbidv | |- ( x = X -> { y e. [_ x / m ]_ M | ph } = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
| 18 | 10 14 17 1 | fvmptf | |- ( ( X e. V /\ { y e. [_ X / m ]_ M | [. X / x ]. ph } e. _V ) -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
| 19 | 7 9 18 | syl2anc | |- ( X e. dom F -> ( F ` X ) = { y e. [_ X / m ]_ M | [. X / x ]. ph } ) |
| 20 | 19 | eleq2d | |- ( X e. dom F -> ( Y e. ( F ` X ) <-> Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) ) |
| 21 | elrabi | |- ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> Y e. [_ X / m ]_ M ) |
|
| 22 | 7 21 | anim12i | |- ( ( X e. dom F /\ Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |
| 23 | 22 | ex | |- ( X e. dom F -> ( Y e. { y e. [_ X / m ]_ M | [. X / x ]. ph } -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
| 24 | 20 23 | sylbid | |- ( X e. dom F -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
| 25 | 3 5 24 | 3syl | |- ( Y e. ( F ` X ) -> ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) ) |
| 26 | 25 | pm2.43i | |- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |