This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Version of elfvmptrab1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Alexander van der Vekens, 15-Jul-2018) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfvmptrab1w.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| elfvmptrab1w.v | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) | ||
| Assertion | elfvmptrab1w | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab1w.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| 2 | elfvmptrab1w.v | ⊢ ( 𝑋 ∈ 𝑉 → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) | |
| 3 | elfvdm | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ dom 𝐹 ) | |
| 4 | 1 | dmmptss | ⊢ dom 𝐹 ⊆ 𝑉 |
| 5 | 4 | sseli | ⊢ ( 𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉 ) |
| 6 | rabexg | ⊢ ( ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) | |
| 7 | 5 2 6 | 3syl | ⊢ ( 𝑋 ∈ dom 𝐹 → { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 9 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] 𝜑 | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝑀 | |
| 11 | 8 10 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑚 ⦌ 𝑀 |
| 12 | 9 11 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } |
| 13 | csbeq1 | ⊢ ( 𝑥 = 𝑋 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) | |
| 14 | sbceq1a | ⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] 𝜑 ) ) | |
| 15 | 13 14 | rabeqbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
| 16 | 8 12 15 1 | fvmptf | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ∈ V ) → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
| 17 | 5 7 16 | syl2anc | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) |
| 18 | 17 | eleq2d | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) ) |
| 19 | elrabi | ⊢ ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) | |
| 20 | 5 19 | anim12i | ⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
| 21 | 20 | ex | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ { 𝑦 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] 𝜑 } → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 22 | 18 21 | sylbid | ⊢ ( 𝑋 ∈ dom 𝐹 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 23 | 3 22 | mpcom | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |