This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate formulation of elementhood in a mapping filter that requires F to be onto. (Contributed by Jeff Hankins, 1-Oct-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfm2.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| Assertion | elfm3 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfm2.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| 2 | foima | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → ( 𝐹 “ 𝑌 ) = 𝑋 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐹 “ 𝑌 ) = 𝑋 ) |
| 4 | fofun | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → Fun 𝐹 ) | |
| 5 | elfvdm | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) | |
| 6 | funimaexg | ⊢ ( ( Fun 𝐹 ∧ 𝑌 ∈ dom fBas ) → ( 𝐹 “ 𝑌 ) ∈ V ) | |
| 7 | 4 5 6 | syl2anr | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐹 “ 𝑌 ) ∈ V ) |
| 8 | 3 7 | eqeltrrd | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝑋 ∈ V ) |
| 9 | fof | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 10 | 1 | elfm2 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 11 | 9 10 | syl3an3 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 12 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 13 | 1 12 | eqeltrid | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
| 16 | simprl | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ∈ 𝐿 ) | |
| 17 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐴 ) ⊆ dom 𝐹 | |
| 18 | fofn | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → 𝐹 Fn 𝑌 ) | |
| 19 | 18 | fndmd | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → dom 𝐹 = 𝑌 ) |
| 20 | 17 19 | sseqtrid | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ) |
| 23 | 4 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → Fun 𝐹 ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → Fun 𝐹 ) |
| 25 | 1 | eleq2i | ⊢ ( 𝑦 ∈ 𝐿 ↔ 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 26 | elfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑦 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
| 29 | 25 28 | bitrid | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝐿 ↔ ( 𝑦 ⊆ 𝑌 ∧ ∃ 𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦 ) ) ) |
| 30 | 29 | simprbda | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → 𝑦 ⊆ 𝑌 ) |
| 31 | sseq2 | ⊢ ( dom 𝐹 = 𝑌 → ( 𝑦 ⊆ dom 𝐹 ↔ 𝑦 ⊆ 𝑌 ) ) | |
| 32 | 31 | biimpar | ⊢ ( ( dom 𝐹 = 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
| 33 | 19 32 | sylan | ⊢ ( ( 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
| 34 | 33 | 3ad2antl3 | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
| 35 | 34 | adantlr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ⊆ 𝑌 ) → 𝑦 ⊆ dom 𝐹 ) |
| 36 | 30 35 | syldan | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → 𝑦 ⊆ dom 𝐹 ) |
| 37 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) | |
| 38 | 24 36 37 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 39 | 38 | biimpd | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 → 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 40 | 39 | impr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) |
| 41 | filss | ⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( ◡ 𝐹 “ 𝐴 ) ⊆ 𝑌 ∧ 𝑦 ⊆ ( ◡ 𝐹 “ 𝐴 ) ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐿 ) | |
| 42 | 15 16 22 40 41 | syl13anc | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐿 ) |
| 43 | foimacnv | ⊢ ( ( 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) = 𝐴 ) | |
| 44 | 43 | eqcomd | ⊢ ( ( 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 45 | 44 | 3ad2antl3 | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) |
| 47 | imaeq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝐴 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) | |
| 48 | 47 | rspceeqv | ⊢ ( ( ( ◡ 𝐹 “ 𝐴 ) ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ ( ◡ 𝐹 “ 𝐴 ) ) ) → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) |
| 49 | 42 46 48 | syl2anc | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) |
| 50 | 49 | rexlimdvaa | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
| 51 | 50 | expimpd | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
| 52 | simprr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → 𝐴 = ( 𝐹 “ 𝑥 ) ) | |
| 53 | imassrn | ⊢ ( 𝐹 “ 𝑥 ) ⊆ ran 𝐹 | |
| 54 | forn | ⊢ ( 𝐹 : 𝑌 –onto→ 𝑋 → ran 𝐹 = 𝑋 ) | |
| 55 | 54 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ran 𝐹 = 𝑋 ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ran 𝐹 = 𝑋 ) |
| 57 | 53 56 | sseqtrid | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑋 ) |
| 58 | 52 57 | eqsstrd | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → 𝐴 ⊆ 𝑋 ) |
| 59 | eqimss2 | ⊢ ( 𝐴 = ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) | |
| 60 | imaeq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑥 ) ) | |
| 61 | 60 | sseq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 62 | 61 | rspcev | ⊢ ( ( 𝑥 ∈ 𝐿 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
| 63 | 59 62 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
| 64 | 63 | adantl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) |
| 65 | 58 64 | jca | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝐴 = ( 𝐹 “ 𝑥 ) ) ) → ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 66 | 65 | rexlimdvaa | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) → ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 67 | 51 66 | impbid | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐿 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
| 68 | 11 67 | bitrd | ⊢ ( ( 𝑋 ∈ V ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
| 69 | 68 | 3coml | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ∧ 𝑋 ∈ V ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |
| 70 | 8 69 | mpd3an3 | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 –onto→ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐿 𝐴 = ( 𝐹 “ 𝑥 ) ) ) |