This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfm2.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| Assertion | elfm2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfm2.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| 2 | elfm | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) | |
| 3 | ssfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) | |
| 4 | 3 1 | sseqtrrdi | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ 𝐿 ) |
| 5 | 4 | sselda | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐿 ) |
| 6 | 5 | adantrr | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ∈ 𝐿 ) |
| 7 | 6 | 3ad2antl2 | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → 𝑦 ∈ 𝐿 ) |
| 8 | simprr | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) | |
| 9 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) | |
| 10 | 9 | sseq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ↔ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 11 | 10 | rspcev | ⊢ ( ( 𝑦 ∈ 𝐿 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
| 12 | 7 8 11 | syl2anc | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
| 13 | 12 | rexlimdvaa | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 14 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐿 ↔ 𝑥 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 15 | elfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑥 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) | |
| 16 | 14 15 | bitrid | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑥 ∈ 𝐿 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ 𝐿 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) ) ) |
| 18 | imass2 | ⊢ ( 𝑦 ⊆ 𝑥 → ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) ) | |
| 19 | sstr2 | ⊢ ( ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) | |
| 20 | 19 | com12 | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) → ( ( 𝐹 “ 𝑦 ) ⊆ ( 𝐹 “ 𝑥 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 22 | 18 21 | syl5 | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) → ( 𝑦 ⊆ 𝑥 → ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 23 | 22 | reximdv | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 24 | 23 | expr | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 25 | 24 | com23 | ⊢ ( ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 26 | 25 | expimpd | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 27 | 17 26 | sylbid | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑥 ∈ 𝐿 → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) ) |
| 28 | 27 | rexlimdv | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ) |
| 29 | 13 28 | impbid | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ↔ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 30 | 29 | anbi2d | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ⊆ 𝐴 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 31 | 2 30 | bitrd | ⊢ ( ( 𝑋 ∈ 𝐶 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝐴 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) ) |