This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflogeq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( exp ‘ 𝐴 ) = 𝐵 ↔ ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | efne0 | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 ) | |
| 3 | 1 2 | logcld | ⊢ ( 𝐴 ∈ ℂ → ( log ‘ ( exp ‘ 𝐴 ) ) ∈ ℂ ) |
| 4 | efsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( log ‘ ( exp ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = ( ( exp ‘ 𝐴 ) / ( exp ‘ ( log ‘ ( exp ‘ 𝐴 ) ) ) ) ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = ( ( exp ‘ 𝐴 ) / ( exp ‘ ( log ‘ ( exp ‘ 𝐴 ) ) ) ) ) |
| 6 | eflog | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ ( exp ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( log ‘ ( exp ‘ 𝐴 ) ) ) = ( exp ‘ 𝐴 ) ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( log ‘ ( exp ‘ 𝐴 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 8 | 7 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) / ( exp ‘ ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐴 ) ) ) |
| 9 | 1 2 | dividd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐴 ) ) = 1 ) |
| 10 | 5 8 9 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = 1 ) |
| 11 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( log ‘ ( exp ‘ 𝐴 ) ) ∈ ℂ ) → ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 12 | 3 11 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 13 | efeq1 | ⊢ ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ∈ ℂ → ( ( exp ‘ ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = 1 ↔ ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = 1 ↔ ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 15 | 10 14 | mpbid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ) |
| 16 | ax-icn | ⊢ i ∈ ℂ | |
| 17 | 2cn | ⊢ 2 ∈ ℂ | |
| 18 | picn | ⊢ π ∈ ℂ | |
| 19 | 17 18 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 20 | 16 19 | mulcli | ⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 21 | 20 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 22 | ine0 | ⊢ i ≠ 0 | |
| 23 | 2ne0 | ⊢ 2 ≠ 0 | |
| 24 | pire | ⊢ π ∈ ℝ | |
| 25 | pipos | ⊢ 0 < π | |
| 26 | 24 25 | gt0ne0ii | ⊢ π ≠ 0 |
| 27 | 17 18 23 26 | mulne0i | ⊢ ( 2 · π ) ≠ 0 |
| 28 | 16 19 22 27 | mulne0i | ⊢ ( i · ( 2 · π ) ) ≠ 0 |
| 29 | 28 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( i · ( 2 · π ) ) ≠ 0 ) |
| 30 | 12 21 29 | divcan2d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · ( 2 · π ) ) · ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ) = ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ) ) = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) ) |
| 32 | pncan3 | ⊢ ( ( ( log ‘ ( exp ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = 𝐴 ) | |
| 33 | 3 32 | mpancom | ⊢ ( 𝐴 ∈ ℂ → ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) ) = 𝐴 ) |
| 34 | 31 33 | eqtr2d | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ) ) ) |
| 35 | oveq2 | ⊢ ( 𝑛 = ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) → ( ( i · ( 2 · π ) ) · 𝑛 ) = ( ( i · ( 2 · π ) ) · ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ) ) | |
| 36 | 35 | oveq2d | ⊢ ( 𝑛 = ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) → ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ) ) ) |
| 37 | 36 | rspceeqv | ⊢ ( ( ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ∈ ℤ ∧ 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · ( ( 𝐴 − ( log ‘ ( exp ‘ 𝐴 ) ) ) / ( i · ( 2 · π ) ) ) ) ) ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) |
| 38 | 15 34 37 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) |
| 39 | 38 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) |
| 40 | fveq2 | ⊢ ( ( exp ‘ 𝐴 ) = 𝐵 → ( log ‘ ( exp ‘ 𝐴 ) ) = ( log ‘ 𝐵 ) ) | |
| 41 | 40 | oveq1d | ⊢ ( ( exp ‘ 𝐴 ) = 𝐵 → ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) |
| 42 | 41 | eqeq2d | ⊢ ( ( exp ‘ 𝐴 ) = 𝐵 → ( 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ↔ 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) |
| 43 | 42 | rexbidv | ⊢ ( ( exp ‘ 𝐴 ) = 𝐵 → ( ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ ( exp ‘ 𝐴 ) ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) |
| 44 | 39 43 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( exp ‘ 𝐴 ) = 𝐵 → ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) |
| 45 | logcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) | |
| 46 | 45 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 47 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 48 | 47 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
| 49 | mulcl | ⊢ ( ( ( i · ( 2 · π ) ) ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( i · ( 2 · π ) ) · 𝑛 ) ∈ ℂ ) | |
| 50 | 20 48 49 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( ( i · ( 2 · π ) ) · 𝑛 ) ∈ ℂ ) |
| 51 | efadd | ⊢ ( ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( ( i · ( 2 · π ) ) · 𝑛 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) = ( ( exp ‘ ( log ‘ 𝐵 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) | |
| 52 | 46 50 51 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( exp ‘ ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) = ( ( exp ‘ ( log ‘ 𝐵 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) |
| 53 | eflog | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) | |
| 54 | 53 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 55 | ef2kpi | ⊢ ( 𝑛 ∈ ℤ → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑛 ) ) = 1 ) | |
| 56 | 54 55 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( ( exp ‘ ( log ‘ 𝐵 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) = ( 𝐵 · 1 ) ) |
| 57 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → 𝐵 ∈ ℂ ) | |
| 58 | 57 | mulridd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( 𝐵 · 1 ) = 𝐵 ) |
| 59 | 52 56 58 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( exp ‘ ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) = 𝐵 ) |
| 60 | fveqeq2 | ⊢ ( 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) → ( ( exp ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) = 𝐵 ) ) | |
| 61 | 59 60 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑛 ∈ ℤ ) → ( 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) → ( exp ‘ 𝐴 ) = 𝐵 ) ) |
| 62 | 61 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) → ( exp ‘ 𝐴 ) = 𝐵 ) ) |
| 63 | 44 62 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( exp ‘ 𝐴 ) = 𝐵 ↔ ∃ 𝑛 ∈ ℤ 𝐴 = ( ( log ‘ 𝐵 ) + ( ( i · ( 2 · π ) ) · 𝑛 ) ) ) ) |