This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is an integer, then the exponential of 2 Kpi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ef2kpi | ⊢ ( 𝐾 ∈ ℤ → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | picn | ⊢ π ∈ ℂ | |
| 4 | 2 3 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 5 | 1 4 | mulcli | ⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 6 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 7 | mulcom | ⊢ ( ( ( i · ( 2 · π ) ) ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( i · ( 2 · π ) ) · 𝐾 ) = ( 𝐾 · ( i · ( 2 · π ) ) ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐾 ∈ ℤ → ( ( i · ( 2 · π ) ) · 𝐾 ) = ( 𝐾 · ( i · ( 2 · π ) ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐾 ∈ ℤ → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) = ( exp ‘ ( 𝐾 · ( i · ( 2 · π ) ) ) ) ) |
| 10 | efexp | ⊢ ( ( ( i · ( 2 · π ) ) ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( exp ‘ ( 𝐾 · ( i · ( 2 · π ) ) ) ) = ( ( exp ‘ ( i · ( 2 · π ) ) ) ↑ 𝐾 ) ) | |
| 11 | 5 10 | mpan | ⊢ ( 𝐾 ∈ ℤ → ( exp ‘ ( 𝐾 · ( i · ( 2 · π ) ) ) ) = ( ( exp ‘ ( i · ( 2 · π ) ) ) ↑ 𝐾 ) ) |
| 12 | ef2pi | ⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = 1 | |
| 13 | 12 | oveq1i | ⊢ ( ( exp ‘ ( i · ( 2 · π ) ) ) ↑ 𝐾 ) = ( 1 ↑ 𝐾 ) |
| 14 | 1exp | ⊢ ( 𝐾 ∈ ℤ → ( 1 ↑ 𝐾 ) = 1 ) | |
| 15 | 13 14 | eqtrid | ⊢ ( 𝐾 ∈ ℤ → ( ( exp ‘ ( i · ( 2 · π ) ) ) ↑ 𝐾 ) = 1 ) |
| 16 | 9 11 15 | 3eqtrd | ⊢ ( 𝐾 ∈ ℤ → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝐾 ) ) = 1 ) |