This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflogeq | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 2 | efne0 | |- ( A e. CC -> ( exp ` A ) =/= 0 ) |
|
| 3 | 1 2 | logcld | |- ( A e. CC -> ( log ` ( exp ` A ) ) e. CC ) |
| 4 | efsub | |- ( ( A e. CC /\ ( log ` ( exp ` A ) ) e. CC ) -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) ) |
|
| 5 | 3 4 | mpdan | |- ( A e. CC -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) ) |
| 6 | eflog | |- ( ( ( exp ` A ) e. CC /\ ( exp ` A ) =/= 0 ) -> ( exp ` ( log ` ( exp ` A ) ) ) = ( exp ` A ) ) |
|
| 7 | 1 2 6 | syl2anc | |- ( A e. CC -> ( exp ` ( log ` ( exp ` A ) ) ) = ( exp ` A ) ) |
| 8 | 7 | oveq2d | |- ( A e. CC -> ( ( exp ` A ) / ( exp ` ( log ` ( exp ` A ) ) ) ) = ( ( exp ` A ) / ( exp ` A ) ) ) |
| 9 | 1 2 | dividd | |- ( A e. CC -> ( ( exp ` A ) / ( exp ` A ) ) = 1 ) |
| 10 | 5 8 9 | 3eqtrd | |- ( A e. CC -> ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 ) |
| 11 | subcl | |- ( ( A e. CC /\ ( log ` ( exp ` A ) ) e. CC ) -> ( A - ( log ` ( exp ` A ) ) ) e. CC ) |
|
| 12 | 3 11 | mpdan | |- ( A e. CC -> ( A - ( log ` ( exp ` A ) ) ) e. CC ) |
| 13 | efeq1 | |- ( ( A - ( log ` ( exp ` A ) ) ) e. CC -> ( ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 <-> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
|
| 14 | 12 13 | syl | |- ( A e. CC -> ( ( exp ` ( A - ( log ` ( exp ` A ) ) ) ) = 1 <-> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 15 | 10 14 | mpbid | |- ( A e. CC -> ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) |
| 16 | ax-icn | |- _i e. CC |
|
| 17 | 2cn | |- 2 e. CC |
|
| 18 | picn | |- _pi e. CC |
|
| 19 | 17 18 | mulcli | |- ( 2 x. _pi ) e. CC |
| 20 | 16 19 | mulcli | |- ( _i x. ( 2 x. _pi ) ) e. CC |
| 21 | 20 | a1i | |- ( A e. CC -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
| 22 | ine0 | |- _i =/= 0 |
|
| 23 | 2ne0 | |- 2 =/= 0 |
|
| 24 | pire | |- _pi e. RR |
|
| 25 | pipos | |- 0 < _pi |
|
| 26 | 24 25 | gt0ne0ii | |- _pi =/= 0 |
| 27 | 17 18 23 26 | mulne0i | |- ( 2 x. _pi ) =/= 0 |
| 28 | 16 19 22 27 | mulne0i | |- ( _i x. ( 2 x. _pi ) ) =/= 0 |
| 29 | 28 | a1i | |- ( A e. CC -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) |
| 30 | 12 21 29 | divcan2d | |- ( A e. CC -> ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) = ( A - ( log ` ( exp ` A ) ) ) ) |
| 31 | 30 | oveq2d | |- ( A e. CC -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) = ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) ) |
| 32 | pncan3 | |- ( ( ( log ` ( exp ` A ) ) e. CC /\ A e. CC ) -> ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) = A ) |
|
| 33 | 3 32 | mpancom | |- ( A e. CC -> ( ( log ` ( exp ` A ) ) + ( A - ( log ` ( exp ` A ) ) ) ) = A ) |
| 34 | 31 33 | eqtr2d | |- ( A e. CC -> A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) |
| 35 | oveq2 | |- ( n = ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) |
|
| 36 | 35 | oveq2d | |- ( n = ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) |
| 37 | 36 | rspceeqv | |- ( ( ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ /\ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. ( ( A - ( log ` ( exp ` A ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) ) ) -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 38 | 15 34 37 | syl2anc | |- ( A e. CC -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 39 | 38 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 40 | fveq2 | |- ( ( exp ` A ) = B -> ( log ` ( exp ` A ) ) = ( log ` B ) ) |
|
| 41 | 40 | oveq1d | |- ( ( exp ` A ) = B -> ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) |
| 42 | 41 | eqeq2d | |- ( ( exp ` A ) = B -> ( A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 43 | 42 | rexbidv | |- ( ( exp ` A ) = B -> ( E. n e. ZZ A = ( ( log ` ( exp ` A ) ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 44 | 39 43 | syl5ibcom | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B -> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 45 | logcl | |- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
|
| 46 | 45 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
| 47 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 48 | 47 | adantl | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> n e. CC ) |
| 49 | mulcl | |- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ n e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
|
| 50 | 20 48 49 | sylancr | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) |
| 51 | efadd | |- ( ( ( log ` B ) e. CC /\ ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
|
| 52 | 46 50 51 | syl2an2r | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |
| 53 | eflog | |- ( ( B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
|
| 54 | 53 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( exp ` ( log ` B ) ) = B ) |
| 55 | ef2kpi | |- ( n e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = 1 ) |
|
| 56 | 54 55 | oveqan12d | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( ( exp ` ( log ` B ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = ( B x. 1 ) ) |
| 57 | simpl2 | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> B e. CC ) |
|
| 58 | 57 | mulridd | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( B x. 1 ) = B ) |
| 59 | 52 56 58 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = B ) |
| 60 | fveqeq2 | |- ( A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( ( exp ` A ) = B <-> ( exp ` ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) = B ) ) |
|
| 61 | 59 60 | syl5ibrcom | |- ( ( ( A e. CC /\ B e. CC /\ B =/= 0 ) /\ n e. ZZ ) -> ( A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( exp ` A ) = B ) ) |
| 62 | 61 | rexlimdva | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) -> ( exp ` A ) = B ) ) |
| 63 | 44 62 | impbid | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( exp ` A ) = B <-> E. n e. ZZ A = ( ( log ` B ) + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |