This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efifo.1 | ⊢ 𝐹 = ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) | |
| efifo.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | ||
| Assertion | efifo | ⊢ 𝐹 : ℝ –onto→ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efifo.1 | ⊢ 𝐹 = ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) | |
| 2 | efifo.2 | ⊢ 𝐶 = ( ◡ abs “ { 1 } ) | |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | recn | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) | |
| 5 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( i · 𝑧 ) ∈ ℂ ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( 𝑧 ∈ ℝ → ( i · 𝑧 ) ∈ ℂ ) |
| 7 | efcl | ⊢ ( ( i · 𝑧 ) ∈ ℂ → ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑧 ∈ ℝ → ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ) |
| 9 | absefi | ⊢ ( 𝑧 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑧 ) ) ) = 1 ) | |
| 10 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 11 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 12 | fniniseg | ⊢ ( abs Fn ℂ → ( ( exp ‘ ( i · 𝑧 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑧 ) ) ) = 1 ) ) ) | |
| 13 | 10 11 12 | mp2b | ⊢ ( ( exp ‘ ( i · 𝑧 ) ) ∈ ( ◡ abs “ { 1 } ) ↔ ( ( exp ‘ ( i · 𝑧 ) ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · 𝑧 ) ) ) = 1 ) ) |
| 14 | 8 9 13 | sylanbrc | ⊢ ( 𝑧 ∈ ℝ → ( exp ‘ ( i · 𝑧 ) ) ∈ ( ◡ abs “ { 1 } ) ) |
| 15 | 14 2 | eleqtrrdi | ⊢ ( 𝑧 ∈ ℝ → ( exp ‘ ( i · 𝑧 ) ) ∈ 𝐶 ) |
| 16 | 1 15 | fmpti | ⊢ 𝐹 : ℝ ⟶ 𝐶 |
| 17 | ffn | ⊢ ( 𝐹 : ℝ ⟶ 𝐶 → 𝐹 Fn ℝ ) | |
| 18 | 16 17 | ax-mp | ⊢ 𝐹 Fn ℝ |
| 19 | frn | ⊢ ( 𝐹 : ℝ ⟶ 𝐶 → ran 𝐹 ⊆ 𝐶 ) | |
| 20 | 16 19 | ax-mp | ⊢ ran 𝐹 ⊆ 𝐶 |
| 21 | df-ima | ⊢ ( 𝐹 “ ( 0 (,] ( 2 · π ) ) ) = ran ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) | |
| 22 | 1 | reseq1i | ⊢ ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = ( ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) ↾ ( 0 (,] ( 2 · π ) ) ) |
| 23 | 0xr | ⊢ 0 ∈ ℝ* | |
| 24 | 2re | ⊢ 2 ∈ ℝ | |
| 25 | pire | ⊢ π ∈ ℝ | |
| 26 | 24 25 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 27 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( 2 · π ) ∈ ℝ ) → ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ ( 2 · π ) ) ) ) | |
| 28 | 23 26 27 | mp2an | ⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ ( 2 · π ) ) ) |
| 29 | 28 | simp1bi | ⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) → 𝑧 ∈ ℝ ) |
| 30 | 29 | ssriv | ⊢ ( 0 (,] ( 2 · π ) ) ⊆ ℝ |
| 31 | resmpt | ⊢ ( ( 0 (,] ( 2 · π ) ) ⊆ ℝ → ( ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) ↾ ( 0 (,] ( 2 · π ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( ( 𝑧 ∈ ℝ ↦ ( exp ‘ ( i · 𝑧 ) ) ) ↾ ( 0 (,] ( 2 · π ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 33 | 22 32 | eqtri | ⊢ ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 34 | 33 | rneqi | ⊢ ran ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = ran ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) |
| 35 | 0re | ⊢ 0 ∈ ℝ | |
| 36 | eqid | ⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) = ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) | |
| 37 | 26 | recni | ⊢ ( 2 · π ) ∈ ℂ |
| 38 | 37 | addlidi | ⊢ ( 0 + ( 2 · π ) ) = ( 2 · π ) |
| 39 | 38 | oveq2i | ⊢ ( 0 (,] ( 0 + ( 2 · π ) ) ) = ( 0 (,] ( 2 · π ) ) |
| 40 | 39 | eqcomi | ⊢ ( 0 (,] ( 2 · π ) ) = ( 0 (,] ( 0 + ( 2 · π ) ) ) |
| 41 | 36 2 40 | efif1o | ⊢ ( 0 ∈ ℝ → ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –1-1-onto→ 𝐶 ) |
| 42 | 35 41 | ax-mp | ⊢ ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –1-1-onto→ 𝐶 |
| 43 | f1ofo | ⊢ ( ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –1-1-onto→ 𝐶 → ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –onto→ 𝐶 ) | |
| 44 | forn | ⊢ ( ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) : ( 0 (,] ( 2 · π ) ) –onto→ 𝐶 → ran ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) = 𝐶 ) | |
| 45 | 42 43 44 | mp2b | ⊢ ran ( 𝑧 ∈ ( 0 (,] ( 2 · π ) ) ↦ ( exp ‘ ( i · 𝑧 ) ) ) = 𝐶 |
| 46 | 34 45 | eqtri | ⊢ ran ( 𝐹 ↾ ( 0 (,] ( 2 · π ) ) ) = 𝐶 |
| 47 | 21 46 | eqtri | ⊢ ( 𝐹 “ ( 0 (,] ( 2 · π ) ) ) = 𝐶 |
| 48 | imassrn | ⊢ ( 𝐹 “ ( 0 (,] ( 2 · π ) ) ) ⊆ ran 𝐹 | |
| 49 | 47 48 | eqsstrri | ⊢ 𝐶 ⊆ ran 𝐹 |
| 50 | 20 49 | eqssi | ⊢ ran 𝐹 = 𝐶 |
| 51 | df-fo | ⊢ ( 𝐹 : ℝ –onto→ 𝐶 ↔ ( 𝐹 Fn ℝ ∧ ran 𝐹 = 𝐶 ) ) | |
| 52 | 18 50 51 | mpbir2an | ⊢ 𝐹 : ℝ –onto→ 𝐶 |