This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efifo.1 | |- F = ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |
|
| efifo.2 | |- C = ( `' abs " { 1 } ) |
||
| Assertion | efifo | |- F : RR -onto-> C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efifo.1 | |- F = ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |
|
| 2 | efifo.2 | |- C = ( `' abs " { 1 } ) |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | recn | |- ( z e. RR -> z e. CC ) |
|
| 5 | mulcl | |- ( ( _i e. CC /\ z e. CC ) -> ( _i x. z ) e. CC ) |
|
| 6 | 3 4 5 | sylancr | |- ( z e. RR -> ( _i x. z ) e. CC ) |
| 7 | efcl | |- ( ( _i x. z ) e. CC -> ( exp ` ( _i x. z ) ) e. CC ) |
|
| 8 | 6 7 | syl | |- ( z e. RR -> ( exp ` ( _i x. z ) ) e. CC ) |
| 9 | absefi | |- ( z e. RR -> ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) |
|
| 10 | absf | |- abs : CC --> RR |
|
| 11 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 12 | fniniseg | |- ( abs Fn CC -> ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) ) |
|
| 13 | 10 11 12 | mp2b | |- ( ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) <-> ( ( exp ` ( _i x. z ) ) e. CC /\ ( abs ` ( exp ` ( _i x. z ) ) ) = 1 ) ) |
| 14 | 8 9 13 | sylanbrc | |- ( z e. RR -> ( exp ` ( _i x. z ) ) e. ( `' abs " { 1 } ) ) |
| 15 | 14 2 | eleqtrrdi | |- ( z e. RR -> ( exp ` ( _i x. z ) ) e. C ) |
| 16 | 1 15 | fmpti | |- F : RR --> C |
| 17 | ffn | |- ( F : RR --> C -> F Fn RR ) |
|
| 18 | 16 17 | ax-mp | |- F Fn RR |
| 19 | frn | |- ( F : RR --> C -> ran F C_ C ) |
|
| 20 | 16 19 | ax-mp | |- ran F C_ C |
| 21 | df-ima | |- ( F " ( 0 (,] ( 2 x. _pi ) ) ) = ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) |
|
| 22 | 1 | reseq1i | |- ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) |
| 23 | 0xr | |- 0 e. RR* |
|
| 24 | 2re | |- 2 e. RR |
|
| 25 | pire | |- _pi e. RR |
|
| 26 | 24 25 | remulcli | |- ( 2 x. _pi ) e. RR |
| 27 | elioc2 | |- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR ) -> ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) ) |
|
| 28 | 23 26 27 | mp2an | |- ( z e. ( 0 (,] ( 2 x. _pi ) ) <-> ( z e. RR /\ 0 < z /\ z <_ ( 2 x. _pi ) ) ) |
| 29 | 28 | simp1bi | |- ( z e. ( 0 (,] ( 2 x. _pi ) ) -> z e. RR ) |
| 30 | 29 | ssriv | |- ( 0 (,] ( 2 x. _pi ) ) C_ RR |
| 31 | resmpt | |- ( ( 0 (,] ( 2 x. _pi ) ) C_ RR -> ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) ) |
|
| 32 | 30 31 | ax-mp | |- ( ( z e. RR |-> ( exp ` ( _i x. z ) ) ) |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
| 33 | 22 32 | eqtri | |- ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
| 34 | 33 | rneqi | |- ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
| 35 | 0re | |- 0 e. RR |
|
| 36 | eqid | |- ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) |
|
| 37 | 26 | recni | |- ( 2 x. _pi ) e. CC |
| 38 | 37 | addlidi | |- ( 0 + ( 2 x. _pi ) ) = ( 2 x. _pi ) |
| 39 | 38 | oveq2i | |- ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) = ( 0 (,] ( 2 x. _pi ) ) |
| 40 | 39 | eqcomi | |- ( 0 (,] ( 2 x. _pi ) ) = ( 0 (,] ( 0 + ( 2 x. _pi ) ) ) |
| 41 | 36 2 40 | efif1o | |- ( 0 e. RR -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C ) |
| 42 | 35 41 | ax-mp | |- ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C |
| 43 | f1ofo | |- ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -1-1-onto-> C -> ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C ) |
|
| 44 | forn | |- ( ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) : ( 0 (,] ( 2 x. _pi ) ) -onto-> C -> ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C ) |
|
| 45 | 42 43 44 | mp2b | |- ran ( z e. ( 0 (,] ( 2 x. _pi ) ) |-> ( exp ` ( _i x. z ) ) ) = C |
| 46 | 34 45 | eqtri | |- ran ( F |` ( 0 (,] ( 2 x. _pi ) ) ) = C |
| 47 | 21 46 | eqtri | |- ( F " ( 0 (,] ( 2 x. _pi ) ) ) = C |
| 48 | imassrn | |- ( F " ( 0 (,] ( 2 x. _pi ) ) ) C_ ran F |
|
| 49 | 47 48 | eqsstrri | |- C C_ ran F |
| 50 | 20 49 | eqssi | |- ran F = C |
| 51 | df-fo | |- ( F : RR -onto-> C <-> ( F Fn RR /\ ran F = C ) ) |
|
| 52 | 18 50 51 | mpbir2an | |- F : RR -onto-> C |