This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique reduced word equivalent to a given word. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgredeu | ⊢ ( 𝐴 ∈ 𝑊 → ∃! 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 3 4 5 6 | efgsfo | ⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |
| 8 | foelrn | ⊢ ( ( 𝑆 : dom 𝑆 –onto→ 𝑊 ∧ 𝐴 ∈ 𝑊 ) → ∃ 𝑎 ∈ dom 𝑆 𝐴 = ( 𝑆 ‘ 𝑎 ) ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐴 ∈ 𝑊 → ∃ 𝑎 ∈ dom 𝑆 𝐴 = ( 𝑆 ‘ 𝑎 ) ) |
| 10 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝑎 ∈ dom 𝑆 ↔ ( 𝑎 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝑎 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝑎 ) ) ( 𝑎 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝑎 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 11 | 10 | simp2bi | ⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑎 ‘ 0 ) ∈ 𝐷 ) |
| 12 | 1 2 3 4 5 6 | efgsrel | ⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑎 ‘ 0 ) ∼ ( 𝑆 ‘ 𝑎 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝑎 ∈ dom 𝑆 ) → ( 𝑎 ‘ 0 ) ∼ ( 𝑆 ‘ 𝑎 ) ) |
| 14 | breq1 | ⊢ ( 𝑑 = ( 𝑎 ‘ 0 ) → ( 𝑑 ∼ ( 𝑆 ‘ 𝑎 ) ↔ ( 𝑎 ‘ 0 ) ∼ ( 𝑆 ‘ 𝑎 ) ) ) | |
| 15 | 14 | rspcev | ⊢ ( ( ( 𝑎 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑎 ‘ 0 ) ∼ ( 𝑆 ‘ 𝑎 ) ) → ∃ 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝑎 ) ) |
| 16 | 11 13 15 | syl2an2 | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝑎 ∈ dom 𝑆 ) → ∃ 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝑎 ) ) |
| 17 | breq2 | ⊢ ( 𝐴 = ( 𝑆 ‘ 𝑎 ) → ( 𝑑 ∼ 𝐴 ↔ 𝑑 ∼ ( 𝑆 ‘ 𝑎 ) ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝐴 = ( 𝑆 ‘ 𝑎 ) → ( ∃ 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ↔ ∃ 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝑎 ) ) ) |
| 19 | 16 18 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝑎 ∈ dom 𝑆 ) → ( 𝐴 = ( 𝑆 ‘ 𝑎 ) → ∃ 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ) ) |
| 20 | 19 | rexlimdva | ⊢ ( 𝐴 ∈ 𝑊 → ( ∃ 𝑎 ∈ dom 𝑆 𝐴 = ( 𝑆 ‘ 𝑎 ) → ∃ 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ) ) |
| 21 | 9 20 | mpd | ⊢ ( 𝐴 ∈ 𝑊 → ∃ 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ) |
| 22 | 1 2 | efger | ⊢ ∼ Er 𝑊 |
| 23 | 22 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → ∼ Er 𝑊 ) |
| 24 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → 𝑑 ∼ 𝐴 ) | |
| 25 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → 𝑐 ∼ 𝐴 ) | |
| 26 | 23 24 25 | ertr4d | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → 𝑑 ∼ 𝑐 ) |
| 27 | 1 2 3 4 5 6 | efgrelex | ⊢ ( 𝑑 ∼ 𝑐 → ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) |
| 28 | fofn | ⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → 𝑆 Fn dom 𝑆 ) | |
| 29 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑑 ) ) ) | |
| 30 | 7 28 29 | mp2b | ⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ↔ ( 𝑎 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑎 ) = 𝑑 ) ) |
| 31 | 30 | simplbi | ⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) → 𝑎 ∈ dom 𝑆 ) |
| 32 | 31 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → 𝑎 ∈ dom 𝑆 ) |
| 33 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑎 ) = ( 𝑎 ‘ ( ( ♯ ‘ 𝑎 ) − 1 ) ) ) |
| 34 | 32 33 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑆 ‘ 𝑎 ) = ( 𝑎 ‘ ( ( ♯ ‘ 𝑎 ) − 1 ) ) ) |
| 35 | 30 | simprbi | ⊢ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) → ( 𝑆 ‘ 𝑎 ) = 𝑑 ) |
| 36 | 35 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑆 ‘ 𝑎 ) = 𝑑 ) |
| 37 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) | |
| 38 | 37 | simpld | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → 𝑑 ∈ 𝐷 ) |
| 39 | 36 38 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑆 ‘ 𝑎 ) ∈ 𝐷 ) |
| 40 | 1 2 3 4 5 6 | efgs1b | ⊢ ( 𝑎 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝑎 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝑎 ) = 1 ) ) |
| 41 | 32 40 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( 𝑆 ‘ 𝑎 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝑎 ) = 1 ) ) |
| 42 | 39 41 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ♯ ‘ 𝑎 ) = 1 ) |
| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( ♯ ‘ 𝑎 ) − 1 ) = ( 1 − 1 ) ) |
| 44 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 45 | 43 44 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( ♯ ‘ 𝑎 ) − 1 ) = 0 ) |
| 46 | 45 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑎 ‘ ( ( ♯ ‘ 𝑎 ) − 1 ) ) = ( 𝑎 ‘ 0 ) ) |
| 47 | 34 36 46 | 3eqtr3rd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑎 ‘ 0 ) = 𝑑 ) |
| 48 | fniniseg | ⊢ ( 𝑆 Fn dom 𝑆 → ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ↔ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑐 ) ) ) | |
| 49 | 7 28 48 | mp2b | ⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ↔ ( 𝑏 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝑏 ) = 𝑐 ) ) |
| 50 | 49 | simplbi | ⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) → 𝑏 ∈ dom 𝑆 ) |
| 51 | 50 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → 𝑏 ∈ dom 𝑆 ) |
| 52 | 1 2 3 4 5 6 | efgsval | ⊢ ( 𝑏 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑏 ) = ( 𝑏 ‘ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ) |
| 53 | 51 52 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑏 ‘ ( ( ♯ ‘ 𝑏 ) − 1 ) ) ) |
| 54 | 49 | simprbi | ⊢ ( 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) → ( 𝑆 ‘ 𝑏 ) = 𝑐 ) |
| 55 | 54 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑆 ‘ 𝑏 ) = 𝑐 ) |
| 56 | 37 | simprd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → 𝑐 ∈ 𝐷 ) |
| 57 | 55 56 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑆 ‘ 𝑏 ) ∈ 𝐷 ) |
| 58 | 1 2 3 4 5 6 | efgs1b | ⊢ ( 𝑏 ∈ dom 𝑆 → ( ( 𝑆 ‘ 𝑏 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝑏 ) = 1 ) ) |
| 59 | 51 58 | syl | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( 𝑆 ‘ 𝑏 ) ∈ 𝐷 ↔ ( ♯ ‘ 𝑏 ) = 1 ) ) |
| 60 | 57 59 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ♯ ‘ 𝑏 ) = 1 ) |
| 61 | 60 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( ♯ ‘ 𝑏 ) − 1 ) = ( 1 − 1 ) ) |
| 62 | 61 44 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( ♯ ‘ 𝑏 ) − 1 ) = 0 ) |
| 63 | 62 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑏 ‘ ( ( ♯ ‘ 𝑏 ) − 1 ) ) = ( 𝑏 ‘ 0 ) ) |
| 64 | 53 55 63 | 3eqtr3rd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( 𝑏 ‘ 0 ) = 𝑐 ) |
| 65 | 47 64 | eqeq12d | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ 𝑑 = 𝑐 ) ) |
| 66 | 65 | biimpd | ⊢ ( ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) ∧ ( 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∧ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → 𝑑 = 𝑐 ) ) |
| 67 | 66 | rexlimdvva | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → ( ∃ 𝑎 ∈ ( ◡ 𝑆 “ { 𝑑 } ) ∃ 𝑏 ∈ ( ◡ 𝑆 “ { 𝑐 } ) ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) → 𝑑 = 𝑐 ) ) |
| 68 | 27 67 | syl5 | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → ( 𝑑 ∼ 𝑐 → 𝑑 = 𝑐 ) ) |
| 69 | 26 68 | mpd | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) ∧ ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) ) → 𝑑 = 𝑐 ) |
| 70 | 69 | ex | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷 ) ) → ( ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) → 𝑑 = 𝑐 ) ) |
| 71 | 70 | ralrimivva | ⊢ ( 𝐴 ∈ 𝑊 → ∀ 𝑑 ∈ 𝐷 ∀ 𝑐 ∈ 𝐷 ( ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) → 𝑑 = 𝑐 ) ) |
| 72 | breq1 | ⊢ ( 𝑑 = 𝑐 → ( 𝑑 ∼ 𝐴 ↔ 𝑐 ∼ 𝐴 ) ) | |
| 73 | 72 | reu4 | ⊢ ( ∃! 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ↔ ( ∃ 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ∧ ∀ 𝑑 ∈ 𝐷 ∀ 𝑐 ∈ 𝐷 ( ( 𝑑 ∼ 𝐴 ∧ 𝑐 ∼ 𝐴 ) → 𝑑 = 𝑐 ) ) ) |
| 74 | 21 71 73 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑊 → ∃! 𝑑 ∈ 𝐷 𝑑 ∼ 𝐴 ) |