This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgred2 | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | 1 2 3 4 5 6 | efgsfo | ⊢ 𝑆 : dom 𝑆 –onto→ 𝑊 |
| 8 | fof | ⊢ ( 𝑆 : dom 𝑆 –onto→ 𝑊 → 𝑆 : dom 𝑆 ⟶ 𝑊 ) | |
| 9 | 7 8 | ax-mp | ⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 10 | 9 | ffvelcdmi | ⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐵 ) ∈ 𝑊 ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) ∈ 𝑊 ) |
| 12 | 1 2 3 4 5 6 | efgredeu | ⊢ ( ( 𝑆 ‘ 𝐵 ) ∈ 𝑊 → ∃! 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 13 | reurmo | ⊢ ( ∃! 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) → ∃* 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ∃* 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 15 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 16 | 15 | simp2bi | ⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∈ 𝐷 ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) ∈ 𝐷 ) |
| 18 | 1 2 | efger | ⊢ ∼ Er 𝑊 |
| 19 | 18 | a1i | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ∼ Er 𝑊 ) |
| 20 | 1 2 3 4 5 6 | efgsrel | ⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐴 ) ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐴 ) ) |
| 22 | simpr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) | |
| 23 | 19 21 22 | ertrd | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 24 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐵 ∈ dom 𝑆 ↔ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐵 ) ) ( 𝐵 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 25 | 24 | simp2bi | ⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝐵 ‘ 0 ) ∈ 𝐷 ) |
| 26 | 25 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐵 ‘ 0 ) ∈ 𝐷 ) |
| 27 | 1 2 3 4 5 6 | efgsrel | ⊢ ( 𝐵 ∈ dom 𝑆 → ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 29 | breq1 | ⊢ ( 𝑑 = ( 𝐴 ‘ 0 ) → ( 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ) | |
| 30 | breq1 | ⊢ ( 𝑑 = ( 𝐵 ‘ 0 ) → ( 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ) | |
| 31 | 29 30 | rmoi | ⊢ ( ( ∃* 𝑑 ∈ 𝐷 𝑑 ∼ ( 𝑆 ‘ 𝐵 ) ∧ ( ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ∧ ( ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 32 | 14 17 23 26 28 31 | syl122anc | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 33 | 18 | a1i | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ∼ Er 𝑊 ) |
| 34 | 20 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐴 ) ) |
| 35 | simpr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 36 | 27 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐵 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 37 | 35 36 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 38 | 33 34 37 | ertr3d | ⊢ ( ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ) |
| 39 | 32 38 | impbida | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝐴 ) ∼ ( 𝑆 ‘ 𝐵 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |